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RATIONAL AREAS OF USING  

THERMOELECTRIC HEAT RECUPERATORS 

An analysis of the literature devoted to the methods of recovery of waste heat from various energy-intensive 
devices is presented. A comparative analysis of existing methods of recuperation of low-temperature waste 
heat is presented – the conventional and organic Rankine cycles, the Kalina cycle, etc. The characteristics 
of the existing thermoelectric heat recuperators are given, as well as the analysis of the possibilities of 
their further development and the most rational areas of their application. 
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Introduction 

General characterization of the problem. Most types of equipment for technological processes in 
industry, heat engines (turbines, internal combustion engines, etc.) disperse a huge amount of heat waste 
during their operation. At the same time, more than half of this heat is not only not used in any way, but 
also leads to negative consequences for the environment – to its thermal pollution [1 – 4]. 

Table 1 shows the main sources of waste heat and their characteristic temperatures. Waste heat is 
conventionally divided into three groups according to the temperature range [5]: 

- high-temperature (> 650 °C); 
- medium-temperature (230 – 650 °C); 
- low-temperature (< 230 °C). 

 

Fig. 1. Distribution of waste heat sources by temperature range [6]. 
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Wherein, as can be seen from the diagram shown in Fig. 1, the majority of thermal waste (more 
than 66 %) falls in the low-temperature range [6]. Another 23 % of waste heat has a temperature of up 
to 300 °C. This temperature range is favourable for heat recovery through thermoelectric conversion of 
thermal into electrical energy. 

At the same time, other methods of heat waste recovery work at such temperatures, including the 
generation of electrical energy through mechanical work. 

Therefore, the purpose of the work is to analyze the possibilities of practical use of 
thermoelectricity for heat waste recovery and to determine the most rational areas for this, where 
thermoelectric energy conversion has a competitive advantage over other methods. 

Table 1 
Main sources of thermal waste and their temperature range [5]. 

Sources of thermal waste Temperature range, °С 

High-temperature 
waste heat 
(> 650 °C) 

Nickel processing furnace 
Steel electric arc furnace 
Basic oxygen furnace 
Aluminum reverberation furnace  
Copper refining furnace 
Steel heating furnace 
Copper reverberation furnace 
Hydrogen installations 
Incinerators 
Glass melting furnace 
Coke oven 
Iron dome 

1.370 – 1.650 
1.370 – 1.650 

1.200 
1.100 – 1.200 

760 – 820 
930 – 1.040 
900 – 1.090 
650 – 980 

650 – 1.430 
1.300 – 1.540 
650 – 1.000 
820 – 980 

Medium-temperature 
waste heat 

(230 – 650 °C) 

Steam boiler exhaust 
Gas turbine exhaust 
Piston engine exhaust 
Ovens for heat treatment 
Drying and baking 
Cement kiln processes 

230 – 480 
370 – 540 
320 – 590 
430 – 650 
230 – 590 
450 – 620 

Low-temperature 
waste heat (< 230 °C) 

Exhaust gases from recovery devices in gas 
boilers, ethylene furnaces, etc 
Process steam condensate 
Cooling water from: 
oven door 
annealing furnaces 
air compressors 
internal combustion engines 
air conditioning 
Ovens for drying, baking and hardening 
Hot processed liquids / solids 

70 – 230  
 
 

50 – 90  
 

30 – 50  
70 – 230  
30 – 50  
70 – 120  
30 – 40  
90 – 230  
30 – 230  
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1. Traditional methods of waste heat recovery 

1.1. Generation of electrical energy through mechanical work 

The Rankine cycle [7, 8]. The most commonly used system for generating electricity from waste 
heat involves using the heat to generate steam, which then drives a steam turbine. The scheme of waste 
heat recovery with the Rankine cycle is shown in Fig. 2. 

The conventional Rankine cycle is the most efficient option for the utilization of waste heat from 
exhaust gas streams at temperatures above 340 – 370 °C. 

At low waste heat temperatures, steam cycles become less economical, as low-pressure steam 
will require more bulky equipment. Moreover, the low temperature of the waste heat cannot provide 
sufficient energy to superheat the steam, which is a requirement to prevent steam condensation and 
erosion of the turbine blades. Therefore, low-temperature heat is better suited for the organic Rankine 
cycle or the Kalina cycle, which use liquids with lower boiling points compared to water. 

 
Fig. 2. Waste heat recovery according to the Rankine cycle. 

The organic Rankine cycle – ORC [7, 9 – 11] operates similarly to the steam Rankine cycle, but 
uses an organic working fluid instead of steam. Options include silicon oil, propane, haloalkanes (such 
as "CFCs"), isopentane, isobutane, and toluene, which have lower boiling points and higher vapor 
pressures than water. This allows the Rankine cycle to operate at much lower waste heat temperatures - 
sometimes as low as 65 ºC. The most appropriate temperature range for an ORC will depend on the fluid 
used, as the thermodynamic properties of the fluids will affect cycle efficiency at different temperatures. 

Compared to steam, the fluids used in ORCs have a higher molecular weight, allowing for 
compact designs, higher mass flow, and higher turbine efficiency (up to 80 – 85 %). However, since the 
cycle operates at lower temperatures, the overall efficiency is only about 10 – 20 %, depending on the 
condenser and evaporator temperatures. Although this efficiency is much lower than that of a high 
temperature steam power plant (30 – 40 %), it is important to remember that low temperature cycles are 
less efficient than high temperature cycles. Efficiency limits can be expressed by the Carnot efficiency 
- the maximum possible efficiency of a heat engine operating between two temperatures. A Carnot 
engine operating with a heat source at 150 ºC and releasing it at 25 ºC is only 30 % efficient. In this 
light, an efficiency of 10 – 20 % is a significant percentage of the theoretical efficiency, especially 
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compared to other low-temperature options, such as the use of piezoelectrics, which are only 1 % 
efficient. 

The Kalina cycle [7, 11] is a variation of the Rankine cycle, which uses a mixture of ammonia 
and water as the working fluid. A key difference between single-fluid cycles and cycles that use dual 
fluids is the temperature profile during boiling and condensation. For single-fluid cycles (e.g., steam or 
organic Rankine cycles), the temperature remains constant during boiling.  As heat is transferred to the 
working medium (such as water), the temperature of the water slowly rises to its boiling point, where 
the temperature remains constant until all the water evaporates. In contrast, a binary mixture of water 
and ammonia (each of which has a different boiling point) will increase its temperature during 
evaporation. This makes it possible to better match the thermal compatibility with the waste heat source 
and the cooling medium in the condenser. Consequently, these systems provide significantly greater 
energy efficiency. 

The cycle was invented in the 1980s, and the first power plant based on the Kalina cycle was built 
in Canoga Park, California in 1991. 

Table 2 

Methods of converting waste heat into electrical energy through mechanical work [7-11]. 

№ 
 

Method Efficiency 
Working 

temperatures 
Electric energy 

cost  
Service 

life 

1. The Rankine cycle 20 – 30 % > 350 °С 0.8 – 1.8 $ / W 
15 – 20 
years 

2. The Kalina cycle ~ 15 % 100 – 540 °С 1.2 – 1.8 $/W 
20 – 30 
years 

3. 
The organic Rankine 
cycle 

~ 8 – 15 % 100 – 590 °С 1.4 – 2.2 $/W 
20 – 30 
years 

A comparison of the main parameters of mechanical methods of converting the energy of waste heat 
into electrical energy is given in table. 2. As can be seen from the table, for successful competition in the 
low-temperature region, thermoelectric energy recuperators need to reach a cost of no more than $1/W. 

1.2. Direct conversion of thermal into electrical energy 

For the recovery of low-temperature waste heat, the most favorable among the methods of direct 
conversion of thermal into electrical energy is thermoelectric [12 – 16]. 

In addition to thermoelectric energy conversion, other technologies are being developed that allow 
generation of electricity directly from heat. These include methods such as thermoacoustic, pyroelectric, 
thermomagnetic, thermoelastic, piezoelectric, and others. [6, 7, 17 – 22]. There is no information in the 
literature on testing such systems in industrial heat recovery devices, although some have undergone 
prototype testing in applications, such as automotive heat recovery. 

2. Existing thermoelectric waste heat recuperators 

Based on the analysis of the literature data, it is possible to single out the currently most common 
areas of use of thermoelectric heat recuperators: industrial plants, internal combustion engines, thermal 
power plants, boilers, gas turbines, domestic heat. 
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2.1. Thermoelectric heat recuperators for industrial installations 

It should be noted that heat recovery from stationary industrial plants (especially at temperatures 
below 600 K) is of great interest for thermoelectricity, as it allows to fully realize its advantages. 
Estimates show that only in the USA, from thousands of industrial processes, about 3300 TJ of energy 
is wasted annually [38, 53], part of which can be returned to the active balance with the help of direct 
thermoelectric energy conversion. Moreover, thermoelectric recuperators can be used not only to 
increase the overall efficiency of energy conversion, but also to provide backup power to the most 
important nodes of industrial installations, which significantly increases their reliability [110]. 

Today, active research is underway of the recovery of waste heat [43 – 51] from such energy-
intensive industrial facilities as steel mills [26, 36 – 41, 54, 55], cement kilns [24, 27 – 35, 38 – 40, 52, 
54], glass melting furnaces [38 – 40, 52], lime annealing furnaces [38, 39, 52], furnaces for the 
production of ethylene [38, 39], waste processing plants [104, 105], furnaces for smelting aluminum and 
other metals  [38, 39, 52], etc. 

Thus, the scientists of KELK Ltd. and JFE Steel Corporation (Japan) [36, 37] jointly created and 
tested a thermoelectric recuperator using waste heat from a steel furnace (Fig. 3). Its power is about 
9 kW with an efficiency of 8 %. 

 

Fig. 3. Thermoelectric generator installed on steel production line of company JFE (Japan) [36]. 

A thermoelectric recuperator using waste heat from the kiln to produce cement was installed at 
the cement kiln at the Awazu plant of Komatsu (Japan) (Fig. 4). The power of such a recuperator is 
about 10 kW. 

The waste heat recuperator of cement kilns [35] was also developed by scientists of the Industrial 
Technology Research Institute (Taiwan) and the Institute of Thermoelectricity (Ukraine). The 
peculiarity of such a generator is its placement at some distance from the rotating cement kiln, while it 
does not affect the technological processes inside the kiln. 

A project to recover waste heat from waste recycling plants using thermoelectricity was jointly 
implemented by Fudzitaka (Japan) and the Institute of Thermoelectricity (Ukraine) [104, 105]. The 
power of one block of such a recuperator installed at the Tokio Gas plant was 1 kW. 

The US Department of Energy is showing interest in the use of waste heat from various 
technological processes in industry. With its support, a group of works dedicated to the recovery of 
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waste heat [38, 39, 52] from steel plants, cement furnaces, glass furnaces, lime kilns, ethylene production 
furnaces, aluminum and other metal smelting furnaces was created [38, 39, 52]. Economic and technical 
assessments of the possibility of creating such equipment are given in these works. However, it did not 
come to real use. 

 

Fig. 4. Installation of thermoelectric generator on cement kiln of the Awazu plant  
of company Komatsu (Japan) [31]. 

Very interesting are the works devoted to the use of waste heat from industry using a combined 
method that unites thermoelectric energy conversion and the organic Rankine cycle [50, 51]. This allows 
increasing the conversion efficiency up to 13 %. 

2.2. Thermoelectric heat recuperators from internal combustion engines 

Recently, a large number of publications have been devoted to the topic of heat recovery from 
internal combustion engines [28, 29, 52, 56 – 103]. These are works related to the recovery of waste 
heat mainly from passenger car engines (Fig. 5). 

In the studies of Japanese scientists [28, 29], the use of a thermoelectric recuperator that employs 
the thermal energy of the exhaust gases of a Suzuki motorcycle is considered. The power generated in 
this way is 10 W at a weight of 3 kg and does not allow talking about the prospects of its mass use. 

The BMW company [63, 64] conducted a series of studies and tests of a thermoelectric energy 
recuperator for passenger car exhaust gases. A power of 200 W was achieved with a recuperator weight 
of 13 kg. 

The thermoelectric recuperator manufactured by Nissan Motors [56, 61, 77] showed rather low 
efficiency. Its efficiency was only 0.1% at a generated power of about 36 W. However, the authors 
believe that increasing the efficiency to 5% under the same conditions will allow the output power to 
increase to 950 W. 

The Hi-Z company [56, 61, 82, 83] presented the design of a thermoelectric heat recuperator 
installed on a GM Sierra car. The maximum power generated by such a device was 255 W with an 
efficiency of 2 %. 

The results of research aimed at optimizing the parameters of a thermoelectric heat energy 
recuperator from a car engine are presented in [66]. The design power of 600 W with an efficiency of 
4 – 5 % was confirmed by a series of experiments 
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Fig. 5. Thermoelectric recuperator for cars [52]. 

However, it should be noted that the use of thermoelectric recuperators in passenger cars has a 
number of disadvantages [60, 70, 71]. The real gain in power is not significant enough. This leads to the 
search for more efficient applications of thermoelectricity. First of all, heat recovery from diesel engines 
of large ships (in addition to high power, their advantage is the possibility of heat removal from the cold 
side of the thermoelectric converter into the surrounding water), as well as large trucks and special 
equipment [75, 80, 82, 93, 97]. 

Thus, the Hi-Z company [61, 75, 80, 82] presented a thermoelectric energy recuperator of exhaust 
gases from the NTC-350 truck diesel engine. After a cycle of tests and refinements, a power of 1 kW 
was achieved. The efficiency of such a recuperator was as low as 1.3 %. 

Also interesting are the works devoted to the use of thermoelectric recuperators in hybrid cars 
[71], where the energy generated during the operation of the internal combustion engine is used to 
recharge car batteries. In [100, 103], the results of calculations of a combined recuperator using 
thermoelectric conversion in combination with the organic Rankine cycle are given. 

2.3. Thermoelectric recuperators for thermal power plants 

Increasing the efficiency of energy conversion at thermal power plants is an extremely important 
task. 

Paper [106] presents the results of studies of a thermoelectric heat recuperator using waste thermal 
energy from power plants of the Tokyo Electric Power company. Through the joint efforts of the 
Komatsu Research Center and KELK [107], such a thermoelectric recuperator was created and its 
experimental studies were carried out (Fig. 6). 

Economic and technical assessments of the possibility of creating similar recuperators were also 
carried out in [38, 39], but the project was not implemented in practice. 
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Fig. 6. Thermoelectric recuperator installed at the thermal power plant  
of the Tokyo Electric Power Company [106]. 

2.4. Thermoelectric recuperators of waste heat from boilers 

Boilers for obtaining steam and hot 
water are used in almost all large enterprises, 
in schools and hospitals, large office buildings 
and for household needs [109]. The heat 
source for such boilers is usually the 
combustion energy of gas or other fuel. 

In [38, 39], research was carried out and 
the design of a thermoelectric recuperator was 
developed, which uses waste thermal energy 
from industrial boilers (Fig. 7). The efficiency of 
this converter was realized at the level of 2 %. 

Scientists from the Brno University of 
Technology (Czech Republic) developed and 
tested a thermoelectric recuperator for the 
utilization of waste heat from a boiler that uses 
biomass as fuel [108]. The power generated by 
such a device is 8.5 W, and the overall 
efficiency of the boiler increases to 76 %. 

2.5. Thermoelectric recuperators of heat from gas turbines 

Papers [23 – 25, 110] are devoted to the topic of waste heat utilization from gas turbines. Exhaust 
gases from turbines of pumping stations on gas mains were used as a source of thermal energy. 

The design of such a recuperator (Fig. 8) ensures the generation of electric power at the level of 
7 kW, which is enough to power gas pumping stations in emergency modes of operation. In this way, 
the backup power supply of the stations is provided, which significantly increases the reliability of its 
operation. 

 

Fig. 7. Installation of a thermoelectric  
generator in the air duct of the boiler [38]. 
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Fig. 8. Gas pumping unit. 1 – gas turbine, 2 – exhaust device,  
3 – thermoelectric heat recuperator [110]. 

2.6. Thermoelectric recuperators of household waste heat 

Possibilities of thermoelectric recovery are not limited exclusively to large industrial sources of 
thermal energy. Recently, the direction of utilization of thermal energy of various household devices to 
obtain electrical energy, which is necessary for powering low-power equipment (lighting the room with 
a safe voltage of 12 V, charging batteries of household devices, ensuring air circulation through the use 
of fans, powering LCD TVs and other radio equipment) [16] has been intensively developing. 

Papers [111-115] present the results of the development of a thermoelectric heat recuperator from 
biomass combustion in a household kitchen stove (Fig. 9). The temperature difference on the 
thermoelectric modules is created on one side by the flame C, and on the other by the water tank A. The 
efficiency of such generators is about 4 – 5 %, and the specific cost of the generated electricity is 
$ 2.7 – $5/W. 

 

Fig. 9. Heat recovery system from biomass combustion in a household stove (A – water tank,  
B – gas outlet and fan, C – hot gases from fuel combustion, D – stove, E – combustion chamber) [112]. 
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Similar devices that make it possible to utilize household heat waste are being developed by many 
organizations, however, unfortunately, it is too early to talk about their mass production and availability 
of such products. 

1.7. Alternative uses of thermoelectric heat recuperators 

One of the applications of thermoelectricity for the utilization of waste heat is a recuperator that 
uses waste heat from the biomass drying process [116]. Such a recuperator is schematically shown in 
Fig. 11. The power generated by it is used to power fans that circulate hot air in such a system. 

 

Fig. 11. Thermoelectric recuperator using waste heat from the biomass drying process: 1 – drying chamber,  
2 – container with hot water, 3 – generator cooling system, 4 – hot air supply, 

 5 – thermoelectric converter [116]. 

Toshiba has developed a 55 W thermoelectric recuperator with an efficiency of 1.8 % [111]. For 
the conversion, it uses waste heat from the operation of an electrical transformer. 

An interesting direction in the development of thermoelectricity is its use to power low-power 
devices. Reduced power consumption and the emergence of highly efficient voltage converters that 
begin operating at a level of 30 mV have determined the emergence of a new solution for powering low-
power devices on the market. It works by converting waste heat into electrical energy. This makes it 
possible to increase the service life and reliability of a wide range of autonomous devices that require 
regular replacement of batteries [124]. 

In particular, in this way, the power supply of wireless detectors, sensors, indicator meters, 
parameter monitoring systems and information transmission systems in hard-to-reach or moving parts 
of equipment is solved, which makes it possible to monitor the condition of the equipment and plan its 
maintenance. Another promising area is the use of space heating control systems inside the house and 
reading indicators from various resource consumption meters. 

Miniature thermoelectric recuperators used to power low-power equipment and sensors on board 
the aircraft are considered in [117-122]. Fig. 12 shows the installation of such a device under the wing 
of the aircraft. The authors present the results of a series of tests of such sources, which confirms their 
high efficiency. 

Thus, the efficiency of currently created thermoelectric energy recuperators is within 1 – 7 % in 
the range of waste heat temperatures of 50 – 500 °С. The cost of such generators is from 2.7 to 13.5 $ / W 
with a service life of 10 – 30 years. 
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Fig. 12. Place of installation and appearance of a thermoelectric recuperator using waste heat  
from an Airbus A 380 aircraft turbine [116]. 

Such indicators do not allow thermoelectricity to compete with the Rankine and Kalina steam 
cycles and indicate the need for further improvement of thermoelectric recuperators. 

A detailed analysis of the possibilities of reducing the cost of thermoelectric waste heat 
recuperators is given in [125]. It follows from it that achieving the required cost of 1 $/W is possible, 
provided that heat exchange systems are created with a cost of up to 1 $/(W/K). 

Conclusions 

1. The most common areas of using thermoelectric heat recuperators are considered, namely - industrial 
installations, internal combustion engines, thermal power plants, boilers, gas turbines, domestic heat. 

2. It has been established that the most effective is the use of thermoelectric recuperators of waste eat 
from energy-intensive industrial facilities, as well as from powerful internal combustion engines 
installed, for example, on large trucks or ships. 

3. The use of miniature thermoelectric recuperators for powering low-power equipment, as well as the 
recycling of household waste heat, is also promising. 

4. A comparative analysis of existing methods of recuperation of low-temperature waste heat is 
provided – the conventional and organic Rankine cycles, the Kalina cycle, etc. It is shown that for 
successful competition in the low-temperature region, thermoelectric energy recuperators need to 
reach a cost no higher than $1/W, which is possible if heat exchange systems with a cost of up to 
$1/(W/K) are created. 
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РАЦІОНАЛЬНІ ОБЛАСТІ ВИКОРИСТАННЯ 

ТЕРМОЕЛЕКТРИЧНИХ РЕКУПЕРАТОРІВ ТЕПЛА 

Приведено аналіз літератури, присвяченої методам рекуперації відпрацьованого тепла від різних 
енергоємних. Представлено порівняльний аналіз існуючих методів рекуперації 
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низькотемпературних відходів тепла – традиційного та органічного циклів Ренкіна, циклу Калини 
та ін. Наведено характеристики існуючих термоелектричних рекуператорів тепла, а також 
аналіз можливостей їх подальшого розвитку та найбільш раціональні області їх застосування. 
Ключові слова: рекуператор, відпрацьоване тепло, ККД, потужність, питома вартість. 
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