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Application of LLM to Search and Systematize the Properties  
of Thermoelectric Materials in Scientific Literature 

Thermoelectric materials find applications in a variety of fields due to their ability to 
directly convert heat into electricity. Selecting the optimal thermoelectric material is a 
challenging task, limited by empirical, time, and economic factors. Recent advances in 
artificial intelligence (AI), in particular large language models (LLMs), demonstrate 
significant potential for automatically extracting and organizing information from the 
scientific literature on the properties of thermoelectric materials. This review analyzes the 
evolution of machine learning-based methods, from early unsupervised NLP models such 
as Word2Vec to modern approaches using GPT models. The research results show that 
LLMs allow for the efficient identification of new promising thermoelectric materials, 
automation of experimental data collection processes, and the formation of structured 
databases, which significantly accelerates the search for materials with high efficiency 
rates. The paper also outlines directions for further research, such as extending the 
methods to tabular and graphical data, as well as optimizing computational resources. 
Key words: thermoelectricity, materials science, machine learning, large language models, 
thermoelectric energy converters, computer simulation. 

Introduction 
Thermoelectric materials are widely used in devices for solving applied problems in 

various fields, namely: powering sensors, spacecraft, cooling electronics, regulating the 
temperature of functional elements of medical devices, heat pumps, as well as in military 
equipment [1-4]. To achieve optimal operating modes of such devices, it is necessary to ensure 
not only the maximum value of the Joffe figure of merit, but also compliance with other 
efficiency criteria. In particular, such a criterion is the coefficient of economic feasibility of a 
thermoelectric generator proposed by Anatychuk L.I. [5], which is calculated by formula 1. 
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 𝐴𝐴 =  𝑚𝑚𝑚𝑚
𝑆𝑆0

  (1)  

where S0 is the cost of the generator, N is the operating time, m is the value of electricity for the 
country of application. 

Finding the most suitable material is a complex task, limited by an empirical approach, 
time and economic factors, which limits the pace of technology development, as well as 
approaches to improve the accuracy and speed of measurements of the properties of 
thermoelectric materials [6-9]. 

New approaches based on machine learning methods for analyzing and summarizing 
scientific data have led to a significant intensification of research into their possible application 
in thermoelectricity [10-11]. To begin the widespread use of such approaches in 
thermoelectricity, it is necessary to form a sufficient and reliable database of the properties of 
thermoelectric materials. Accumulating such a database using traditional experimental methods 
is a costly and time-consuming process. 

The scientific literature contains data obtained from decades of experimental and 
computational research into the properties of materials, but much of this knowledge is hidden 
in unstructured texts. Manually collecting thermoelectric (TE) data from thousands of papers is 
impractical, so there is a need to use artificial intelligence (AI) and natural language processing 
(NLP) to automate the collection of information. In recent years, Large Language Models 
(LLMs) – deep neural networks trained on large text datasets – have become powerful tools for 
analyzing and understanding texts. Using large language models, algorithms can analyze, 
process, and generate text, finding the right information in unstructured data, making them an 
effective tool for automated processing of scientific literature and searching for relevant 
knowledge. 

Therefore, we set the task to consider the evolution of methods for searching and 
collecting information on thermoelectric materials from literary sources based on artificial 
intelligence: from early NLP approaches to modern LLM-based systems. 

The purpose of the work is to study the efficiency of using large language models (LLM) 
for accumulation and systematization of data on the properties of thermoelectric materials from 
scientific literature, as well as the formation of a list of parameters that can be obtained as a 
result of this process. 

1. Applying unsupervised machine learning to search for material properties in 
the literature 

Fig.1 shows the operation diagram of the transformer, on the basis of which large speech 
models (LLM) operate [12]. The transformer consists of two main blocks – an encoder and a 
decoder – each of which contains N homogeneous layers. At the input, the sequence is first 
converted into fixed-dimensional vectors using embedding layers, to which positional encoding 
is added to preserve information about the order of the elements. Each encoder layer includes 
a Multi-Head Self-Attention mechanism, which allows the model to consider the context of the 
entire input sequence in parallel in different “heads”, following which the results are passed 
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through a layered normalization layer (Add & Norm) and a position-independent two-layer 
feed-forward (Feed-Forward + Add & Norm). 

 
Fig. 1. Transformer operation diagram [8] 

The decoder is built similarly, but contains an initial element of "masked" self-attention 
(Masked Multi-Head Attention), which prohibits access to "future" tokens during generation, 
as well as a phase of interaction with the encoder's output representations (Multi-Head Attention 
over encoder keys and values). After next normalization and processing through the Feed-
Forward layer, the decoder output is projected through the linear layer and converted into a 
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probability distribution over the dictionary using Softmax. This architecture provides high 
parallelization of learning and efficient modeling of long-term dependencies without the use of 
recurrent or convolution networks. 

Tshitoyan V. et al. [13] were among the first to demonstrate the potential of unsupervised 
machine learning to uncover “hidden” knowledge about the properties of thermoelectric 
materials in the literature. Tshitoyan et al. trained the Word2Vec model (a two-layer neural 
network for word embedding) on 3.3 million abstracts from the scientific literature. For this 
purpose, the skip-gram algorithm of the Word2Vec model was chosen, which is capable of 
capturing semantic connections by predicting contextual words, which allowed obtaining 200-
dimensional vector representations of each term without any manual labeling. This model was 
unexpectedly able to learn scientific concepts: for example, the vector for the word “iron” was 
closer to the word “steel” than to “organic,” reflecting fundamental chemical patterns. In the 
context of thermoelectric materials, the embedding of the word "thermoelectric" showed high 
cosine similarity with the names of certain materials (e.g., Bi₂Te₃), even though these materials 
were not explicitly labeled as thermoelectric in the corresponding texts. The authors interpreted 
such results as predictions of new potential thermoelectric materials. To confirm this idea, 
Tshitoyan et al. compared the materials recommended by the model with an external database 
containing about 48,000 compounds with calculated power factors (ZT factor) using density 
functional theory. It turned out that 7663 compounds described in the literature were not 
explicitly related to thermoelectric terms. When ranked by similarity to the word 
"thermoelectric", the top 10 candidates had high theoretical power factors (average value ~ 
40.8 μWcm⁻¹K⁻²) – significantly higher than the known average values (~ 17.0 μWcm⁻¹K⁻²). 
This means that the model successfully identified materials with thermoelectric potential that 
had not been investigated. Further retrospective analysis showed that many of the materials 
recommended by the model were later described as thermoelectric. This work [8], published in 
2019, became fundamental, proving that “hidden” knowledge from literary sources can be used 
to discover new materials. 

While word embeddings reflect abstract relationships, other works have focused on 
directly extracting numerical data from texts. One of the first to create an automated database 
of thermoelectric materials was Sierepeklis O., Cole J. [14]. They used ChemDataExtractor 2.0, 
an open-source NLP tool specialized in chemical texts, adapting it for articles on 
thermoelectricity. They processed the texts of 60.843 articles, obtaining 22.805 data records for 
10.641 unique chemical compounds, including the Seebeck coefficient, electrical and thermal 
conductivity, power factor, and ZT. The database included both experimental and theoretical 
results, and an accuracy of 82.25 % was achieved, making the database a valuable resource for 
scientists, despite some limitations (for example, the difficulty of determining the experimental 
or theoretical origin of the data). The work became an important example of how targeted NLP 
accelerates data aggregation in materials science. 

By 2023, there are works by scientists describing the first more complex methods of 
artificial intelligence, including semi-supervised learning and the first attempts to apply large 
language models (LLM) in chemistry. One important study was the application of machine 
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learning to classify new thermoelectric candidates in scientific texts. Jia X. et al. (2023) [15] 
presented a Positive-Unlabeled (PU) learning approach – a form of semi-supervised learning – 
to analyze publications to identify materials that are potentially thermoelectric. The choice of 
PU-learning is due to the fact that it is quite easy to collect a list of known thermoelectric 
compounds in the literature (the “positive” examples), while all other materials are unlabeled 
and not explicitly negative. The PU-classifier is able to distinguish between positive and 
unlabeled data, assuming that most unlabeled examples are negative, without the need for an 
exhaustive list of non-thermoelectric materials. 

In the method proposed by Jia X. et al., articles were initially automatically marked as 
positive if the title mentioned the formula of a known thermoelectric material. This allowed for 
the creation of a training sample of validated thermoelectric articles, as opposed to a large 
number of unmarked publications. Then, a classifier (presumably a text model or a word 
frequency model) was trained to determine which unlabeled entries were indeed related to 
thermoelectrics. After extensive searching, the model identified 40 candidate materials that 
were not previously known to be of interest for applications. 

To test the AI-selected candidates, the researchers performed first-principles calculations of 
the transport properties of each material. Strikingly, they found 20 materials (8 p-type and 12 n-
type) with a theoretically predicted ZT > 1, the threshold for excellent thermoelectric 
performance. Among these candidates were entire new families of compounds, such as certain 
binary compounds of the AX₂ type, ternary compounds (Cd/Zn)(GaTe₂)₂, and quaternary 
chalcogenides (e.g., CsDy₂Ag₃Te₅), which deserved further experimental investigation. This 
workflow – text analysis to select candidates followed by quantum calculations – is an example 
of a practical application of AI: rapidly isolating promising materials from a vast chemical space. 

The strong point of the PU approach model was that it used minimal expert input (only 
known positive examples) to efficiently exploit the literature for material discovery. However, 
its disadvantage was that it relied only on article titles (for labeling), which could result in 
important details contained in the full text being missed, and some materials could go unnoticed 
if their names or formulas did not clearly appear in known lists of thermoelectric materials. 
Nevertheless, the successful identification of high ZT candidates demonstrates that even partial 
textual input combined with semi-supervised AI can accelerate material discovery. 

Significant progress has been made with the advent of GPT-3.5 (ChatGPT), a large 
language model with conversational capabilities and extensive knowledge. Unlike the well-
defined templates of ChemDataExtractor, a large language model can, in principle, interpret 
sentences about a material and its properties in much the same way as a human scientist would.  
Early experiments looked promising: for example, there were reports that even without training 
on specialized materials science data, ChatGPT could identify material–property pairs, 
provided the queries were formulated correctly. However, challenges such as numerical 
accuracy, consistency, and the risk of “hallucinations” (making up facts) still needed to be 
overcome to trust LLM in scientific research. By the end of 2023, the foundation was laid for 
the dominance of information extraction techniques based on large language models, leading 
to rapid development of these areas in 2024. 
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2. Thermoelectric property collection and classification systems based on GPT 
models 

Thway M. et al. (2024) [16] published a study in which they used the GPT-3.5 model (a 
175 billion OpenAI model derived from GPT-3) to automatically extract information about the 
synthesis of thermoelectric materials by the solid-state method. They focused on ternary 
chalcogenides – compounds important for modern thermoelectrics – and sought to 
automatically obtain synthesis “recipes” (starting materials, annealing temperatures and 
durations, alloying element concentrations, etc.) from scientific papers. GPT-3.5 was chosen 
for its powerful natural language understanding and generation capabilities, which allowed the 
authors to use prompt engineering instead of manually creating information extraction rules. 
The authors created a reference dataset (“Gold Standard”) annotated by experts and used it to 
evaluate the model’s performance and optimize query formulation. As a result of iterative 
testing, an accuracy of about 73% in extracting synthesis parameters was achieved, and the 
model successfully obtained synthesis details from 61 out of 168 articles on chalcogenides. The 
study demonstrated that even without additional training, carefully formulated queries to LLM 
can effectively structure experimental data. The main finding was that providing multiple 
examples in the query significantly improved the model's accuracy. Despite certain limitations 
(missing hidden details or difficulties with large texts due to the GPT-3.5 context limit), this 
work was one of the first to use LLM in materials science experimental contexts. 

Polak M.P., Morgan D. [17] presented in Nature Communications the “ChatExtract” 
methodology, where ChatGPT (GPT-3.5) was used to extract data on material properties with 
a minimum number of training examples. They perceived the model as an interlocutor: through 
a series of carefully thought-out queries, the model consistently found and verified the 
“Material – Property – Value – Unit” pattern. The innovation was a multi-stage query scheme: 
the model first identified candidate sentences, then confirmed the presence of the desired 
properties, and finally provided a structured response. The authors achieved very high accuracy: 
90.8 % precision and 87.7 % recall for the elastic modulus, and similar results (~ 91 % 
precision, ~ 84 % recall) for the critical cooling rates of metallic glasses. This showed that 
LLMs can be very accurate when properly managed. A particularly important methodological 
aspect was to allow the model to respond “no” to avoid “hallucinations.” The authors also found 
that retaining context in the dialogue significantly improved the accuracy of the extraction. 

In contrast to previous approaches that used ready-made models, Dagdelen J. et al. [18] 
(2024) conducted additional training (fine-tuning) of LLM. They developed a sequence-to-
sequence framework that allowed "extracting" structured data (entities and their relationships) 
from scientific texts, training the model on several hundred labeled examples. This allowed the 
model to effectively recognize compound names, synthesis steps, measured properties, and 
connect them. The model achieved high results (F1-score ~ 0.9), demonstrating that even a 
small amount of training data can significantly improve the accuracy of extraction. The 
disadvantage is the laboriousness of creating a training dataset and the need for specialized 
knowledge of machine learning. However, this approach is promising for creating highly 
accurate "reading machines" specializing in scientific texts. 
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Itani S. et al. [19] (2025) developed a database called “Large Language Model-Driven 
Database for Thermoelectric Materials” using the GPTArticleExtractor pipeline (now with 
GPT-4), which allowed to “extract” an unprecedentedly large amount of information from the 
literature. This project was a direct continuation of the 2022 database created using 
ChemDataExtractor, but with the elimination of its shortcomings thanks to the advantages of 
GPT-4: increased accuracy and completeness of data. 

The authors systematically collected about 20.000 scientific articles (DOIs) on 
thermoelectric materials, mostly from Elsevier journals. Using Elsevier’s API, they retrieved 
the full texts of the articles in XML format and converted them into plain text for further 
analysis. The choice of the GPT-4 model was crucial because GPT-4 has a better understanding 
of complex sentences and executes instructions more consistently than previous versions. 

The authors developed queries for each article, probably by analyzing individual sections 
(experimental results, tables, supplementary materials) to detect any mention of thermoelectric 
properties. In automatic mode, they created a new database covering 7123 unique 
thermoelectric compounds with a full set of properties. In addition to standard parameters 
(Seebeck coefficient, electrical conductivity, thermal conductivity, power factor, ZT, 
measurement temperature), this database also includes structural information – the type of 
crystal structure, lattice parameters and space group of the materials. 

The inclusion of structural descriptors is an important step forward, as it allows us to 
investigate the dependence of properties on the structure of the material (for example, the 
relationship of the type of crystal lattice with high ZT). GPT-4, with its extensive knowledge 
and advanced analytical capabilities, was able to correctly identify and summarize such 
information that simple parsers often cannot recognize if the data format is non-standard. 

The resulting dataset, with thousands of compounds, each with numerous annotated 
properties, is one of the most comprehensive resources in the field of thermoelectrics to date. 
The authors emphasize that the use of LLM allowed overcoming many limitations of manual 
or semi-automatic data collection. For example, the model could adapt to different forms of 
data representation (different units, word order, wording), which was a problem for manual 
approaches. 

After the automatic data extraction, the authors implemented scripts to standardize units 
of measurement. In addition, automated cross-comparison of the “extracted” information with 
the source text was performed, which increased the reliability of the database. Although exact 
accuracy figures have not yet been published, high accuracy is expected on the basis of previous 
experience. 

An important improvement was the structuring: each database entry has a clear labeling 
of the context (composition, structure, properties, temperature, etc.). Thanks to this, the 
database has become especially useful for training machine models and analyzing relationships 
in materials science. For example, it is now possible to quickly find all materials with a 
diamond-like cubic structure and a Seebeck coefficient > 200 µV/K at 300 K, which previously 
required significant literature search efforts. The authors note that challenges remain for fully 
automated data collection, including distinguishing data from multiple materials within a single 



M.M. Korop, A.V. Prybyla.  
Application of LLM to Search and Systematize the Properties of Thermoelectric Materials in Scientific… 

ISSN 1607-8829 Journal of Thermoelectricity №1, 2025     23 

text and determining whether data is experimentally or theoretically calculated. These issues 
are the subject of further research and improvement. 

Conclusions 
1. There are solutions for generating a sufficient database of thermoelectric material 

properties from the scientific literature based on a combination of automatic tools with AI 
and verification using more specialized tools or humans. 

2. Potential areas for further improvement of the technology: processing tabular and graphical 
elements of scientific articles, working with foreign-language data, since the vast majority 
of LLM models were trained on English-language literature, further optimization of search 
methods to reduce the required computing power. 

3. It is promising to develop an AI agent capable of continuously analyzing new articles in 
thermoelectric materials science, which would allow scientists to gain instant access to a 
relevant source of information. 
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Застосування LLM для пошуку та систематизації властивостей 
термоелектричних матеріалів із наукової літератури 

Термоелектричні матеріали знаходять застосування у різноманітних сферах 
завдяки можливості прямого перетворення тепла в електроенергію. Вибір 
оптимального термоелектричного матеріалу є складним завданням, яке 
обмежується емпіричними, часовими та економічними факторами. Останні 
досягнення в галузі штучного інтелекту (ШІ), зокрема великі мовні моделі (LLMs), 
демонструють значний потенціал для автоматичного збору та систематизації 
інформації з наукової літератури про властивості термоелектричних матеріалів. 
Цей огляд аналізує еволюцію методів на основі машинного навчання, від ранніх 
некерованих NLP-моделей, таких як Word2Vec, до сучасних підходів з 
використанням GPT-моделей. Результати досліджень показують, що LLM 
дозволяють ефективно ідентифікувати нові перспективні термоелектричні 
матеріали, автоматизувати процеси збирання експериментальних даних і 
формувати структуровані бази, що значно прискорює пошук матеріалів з високими 
показниками ефективності. У роботі окреслені також напрямки для подальших 
досліджень, такі як розширення методів на табличні та графічні дані, багатомовні 
моделі, а також оптимізація обчислювальних ресурсів. 
Ключові слова: термоелектрика, матеріалознавство, машинне навчання, великі 
мовні моделі, термоелектричні перетворювачі енергії, комп'ютерне моделювання. 
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