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MACHINE LEARNING IN THERMOELECTRIC 
MATERIALS SCIENCE  

The paper presents machine learning methods and their application in thermoelectric materials 
science. The results of their application, strong points and application areas are shown. The 
difficulties that arise in the process of predicting the properties of thermoelectric materials and ways 
to overcome them were taken into account. Bibl. 30, Fig. 1, Tabl. 2.  
Key words: machine learning methods, thermoelectric materials science.  

Introduction 

General characterization of the problem. Machine learning plays an increasingly important role 
in the intensification of scientific research and discoveries. New approaches and methods open up the 
possibility of speeding up the discovery of new promising materials [1 – 3], optimization of device 
manufacturing technologies [4, 5], calculation of the most economically advantageous solutions under 
given conditions [6].  

As noted in article [7], the property of thermoelectricity is its use in areas that shape scientific 
and technological progress, therefore it is developing primarily in the leading countries of the world. 
Thermoelectric materials have great potential; today they serve as the basis for generating, cooling and 
sensor devices and sensors, which have found application in all spheres of life from medicine to space. 
However, the selection of the optimal thermoelectric material for given conditions, its search or 
optimization is not a trivial task, requiring significant time and material costs. 

There are a number of studies on the use of machine learning in thermoelectric materials science; 
they show high efficiency and low cost of use compared to traditional approaches. 

The purpose of the work is to consider machine learning methods and highlight the results of their 
application in thermoelectric materials science. 

Supervised machine learning methods in thermoelectric materials science  
Machine learning is a field of scientific research that studies the ability of a computer to learn 

without being pre-programmed [7]. Machine learning algorithms can be divided into two groups: 
supervised and unsupervised. Each of these groups has its own scope and the algorithm that can give 
the most accurate result under the given conditions is chosen. 

Supervised machine learning is the construction of algorithms capable of finding general patterns 
and hypotheses using externally obtained training and test data sets. Such an algorithm studies certain 
patterns in the training data set for further verification on test data sets [8]. 
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Unsupervised machine learning – recognition of patterns and sets of similarities without the 
involvement of target attributes, all variables that are present in the training data set participate in the 
analysis, owing to which such algorithms become useful for clustering and associative segmentation [9]. 

Machine learning models rely on three key components: training data, descriptors, and an 
algorithm. Training data are sets of examples from which the algorithm tries to obtain chemical trends, 
descriptors are low-level characteristics of materials (crystal structure, chemical formula, average 
atomic number, etc.), which allows to "vectorize" a chemical material and make it suitable for further 
machine learning. learning algorithm – polls training vector data in combination with a certain template 
[10].  

Kamal Choudhary et al. [11] in their work on the search for highly efficient 3D and 2D 
dimensional thermoelectric materials use supervised learning algorithms, namely: decision trees, 
random forest of decision trees, k nearest neighbors, multilayer perceptron and gradient amplification 
techniques.  

A decision tree is a popular machine learning algorithm when the task is to classify a data set or 
perform regression, this solution effectively copes with missing values and possible errors in the data 
set [12]. A graphical representation can be represented as a tree, where the nodes represent the 
validation of conditions for the data and the branches represent the possible outcomes of those 
conditions. Data for use in this method are partitioned into subsets based on entropy, Gini coefficient, 
etc. In the article by Alrebdi et al. [13], this method is used to predict the thermal conductivity of 
thermoelectric materials based on Bi2Te3. Decision trees are often used as the basis for ensemble 
methods, such as a random forest of decision trees. 

The main idea of the random forest ensemble method is to create subsets of training data and 
train individual decision trees for further averaging of predictions (regression task) or combination 
(classification task). This approach makes it possible to obtain much higher accuracy of forecasts. The 
advantages of this algorithm include the evaluation of data structure and dependencies for data analysis, 
and the disadvantages include a relatively slow learning speed due to the need to create and train a large 
number of individual trees. In the work of Chen et al. [14] the random forest method is used to discover 
new M2X3 thermoelectric materials with only composition information. 

Gradient amplification is used for the composition of weak models (decision trees), gradient 
descent is used, which allows minimizing the loss functional. Increasing the accuracy of predictions is 
achieved by adding new models that correct the errors of previous models. This method is widely used 
and is included in well-known libraries such as XGBoost, LightGBM, CAT Boost. Sheng et al. [15] 
used this algorithm to predict the power factor in diamond-like thermoelectric materials. 

K-nearest neighbors is one of the simplest supervised machine learning algorithms, which is 
based on the classification of a new object given the classes of K nearest neighbors. For example, the 
Euclidean distance can be used to determine the nearest neighbor. This can lead to slow learning of the 
algorithm on large data sets due to the need to calculate the distance between all pairs of objects. 
Gyoung et al. [16] use K-nearest-neighbor regression to predict the target value for the input data by 
interpolating the K-nearest-neighbor target values in the training data.  

The multilayer perceptron belongs to more advanced machine learning algorithms. It is a neural 
network consisting of three or more layers, each of which contains several neurons. The algorithm uses 
backpropagation of error for training, which allows to optimize the weights of the neural network using 
gradient descent. Thus, each neuron, receiving input data, calculates their internal sum and applies some 
activation function: sigmoid, hyperbolic tangent, etc., adding nonlinearity to the value of the neuron. 
Uysal et al. [17] use a multilayer perceptron algorithm to estimate the Seebeck coefficient for a p-type 
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high-temperature thermoelectric material. This algorithm can serve as a basis for more complex neural 
networks of the convolutional neural network type. 

Unsupervised machine learning methods in thermoelectric materials science  
Unsupervised machine learning algorithms are effective when working with datasets that do not 

contain labels, allowing for hidden structures to be found. Thus, there is an opportunity to carry out 
clustering to group materials based on their chemical, mechanical or physical properties, identifying 
their new classes or properties that are common to a certain group. They are also used in the search for 
anomalies and defects due to the search for deviations from standard values. One of the main 
applications is the automatic search for combinations of elements or parameters to obtain optimal 
materials under given conditions or to carry out their optimization. Jia et al. [18] use  
K-means, Gaussian mixture, DBSCAN, AGNES, Birch to search for promising semi-Heusler 
thermoelectric materials, and Iwasaki et al. [19] use the LASSO algorithm (Method of Minimization of 
Absolute Compression and Operator Selection) to identify modern materials based on spin-
thermoelectric material.  

K-means works by dividing the data set into clusters (groups) and aims to minimize variability 
within clusters and maximize between them. K determines the number of clusters specified by the user. 
The algorithm uses K arbitrary centroids and places the data record in the closest one. After completing 
the placement of objects, the centroids calculate their average value in the cluster, this process happens 
iteratively until the centroids stabilize and equilibrium occurs. Sheng et al. [20] use this method to 
accelerate the discovery of Cu-Sn-S thermoelectric compounds using high-throughput synthesis. 

The combination of Gaussian divisions is a statistical model and represents a Gaussian sum, 
where the skin component contains the mean, dispersion and value. This algorithm is often used to 
generate elliptic shapes in data clusters. To set the parameters, the method of maximizing likelihood 
through the EM algorithm (Expectation-Maximization) is used. Shimizu et al. [21] use this method for 
gate analysis of several target parameters in materials design. 

DBSCAN, AGNES and Birch are clustering algorithms used to measure the distance or similarity 
between data points, their main goal is to detect natural groups in data without the need to explicitly 
specify the number of clusters.  

DBSCAN (Density-Based Spatial Clustering of Applications) works by identifying clusters 
based on large density variance. 

AGNES (Agglomerative Nesting) – gradual unification of objects into hierarchical clusters and 
visualization using a dendrogram. 

Birch – the algorithm is optimized for clustering large data sets, allowing them to be processed 
quickly. 

These methods are often employed to discover new groups of promising materials and are used 
in a number of works [18, 22]. 

The LASSO regression method works by L1 regularization, reducing the coefficients of some 
variables to zero, which facilitates feature selection and helps to highlight the most important features 
from a large set of features. One drawback follows from this - with signs that are strongly correlated, 
only one can be taken into account. 

When searching for and optimizing a thermoelectric material, the efficiency of the material can 
be affected by electrical conductivity, thermal conductivity, the Seebeck coefficient, and other 
parameters. Using this method, you can determine the set that will give the most accurate result. Also, 
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it provides an opportunity to understand how changing conditions (temperature, pressure, etc.) will 
affect their properties and to understand the mechanisms of this influence. Wudil et al. [23] use this 
method to evaluate the performance of materials based on Bi2Te3. 

Results of the application of machine learning in thermoelectric materials science 
In the paper by Gaultois et al. [10] published in 2015, the authors were among the first to develop 

an electronic system for evaluating the parameters of thermoelectric alloys in real time based on 
machine learning. In the illustration presented by them it is clear that the best studied thermoelectric 
materials lie in a certain region of the periodic table (black and blue dots), chalcogenides and p-
elements, while orange dots highlight new material alloys proposed by the system based on machine 
learning and these materials are placed outside the known materials (pure intermetallics).  

 

 
Fig. 1. The periodic table of elements based  

on the composition-weighted average  
of the positions of the elements in the material [10] 

The authors of this paper have developed a machine model that provides recommendations on 
the suitability of new thermoelectric alloys for further research, but such a model does not return 
quantitative predictions of thermoelectric properties or accurate identification of thermoelectric alloys. 
Such a machine learning-based recommendation system looks for empirical, chemical patterns in 
experimental data on known thermoelectric materials in order to make statistical predictions about the 
performance of new materials. When checking the obtained results, the system provided results with 
high accuracy, where the error distribution for various material properties approaches 0. As a result, 
several interesting thermoelectric alloys were found selected from the list proposed by the algorithm 
and experimental confirmation of thermoelectric properties [23 – 25] (Table 1). 

Table 1 

Several promising new thermoelectric compounds selected from the calculated list.  P values 
refer to the modelُ s level of confidence that a given material will exhibit room temperature values of 

a certain property (for instance, S or ρ) within target values [10] 

Material PS Pρ Pκ Pgap Comments 

TaPO5 and 
TaVO5 

0.894 0.793 0.958 0.987 
High polyhedral connectivity and 

structural superlattices 
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Continuation of table 1 

Tl9SbTe6 0.845 0.871 0.999 0.876 
Recently reported to be a good 
thermoelectric material (zT ≈ 1 at 600 K) 

TaAlO4 0.893 0.703 1 0.977 
High mass contrast, high polyhedral 
connectivity (TaO6 octahedra dividing 
edges and vertices) 

SrCrO3 0.772 0.767 0.996 0.95 

High polyhedral connectivity (3-D 
angular connection of CrO6 octahedra), 
metallic, when created under high 
pressure. 

TaSbO4 0.892 0.919 1 0.997 
High polyhedral connectivity: layered, 
edge-sharing MO6 octahedra 

TiCoSb 0.981 0.714 0.958 0.833 

TiCoSb is not a new compound, but has 
been studied as a high zT material. 
However, it was not included in the 
training data. 

 
Thanks to machine learning, the authors managed to be the first to propose an experimentally 

viable new compound from a real white chemical space, where no previous characteristics indicated 
promising chemical processes [10]. 

Another area where machine learning can find promising application is finding the dependences 
and parameters of the spin-controlled thermoelectric effect (STE) [19, 26]. Such devices could provide 
a universal thermoelectric technology with scalable production, but this is hindered by a lack of 
understanding of the fundamental physics and properties of the materials responsible for the effect. The 
article by Iwasaki et al. [19, 26] claims the synthesis of a material that helped in the identification of a 
new STE material with a thermal EMF that is an order of magnitude higher than that of the current 
generation of devices. 

Recent works describe the emergence of new, more accurate models, which, in addition to 
predicting probably new interesting thermoelectric materials for research, also learn to predict the 
properties of materials with high accuracy, the coefficient of determination R2 = 0.91-0.959 for well-
studied materials [27 – 29]. 

One of the challenges facing improving the accuracy of such machine learning models is the 
creation of complete and high-quality databases of material properties, as well as access to them [30]. 
Despite the constant growth of interest in the application of machine learning algorithms for the search 
and discovery of new materials, today we have very modest tools compared to other areas of its 
application, namely image processing and industrial production. The degree of freedom (DoF) is the 
number of model variable parameters that are statistically significant. The degree of freedom directly 
affects the desired size of the required training data sets, so it is common to use models with a limited 
number of variable parameters and an approximate estimate of properties in the search space. 

 In the article by Gyoung S. Na et al. [31] a publicly open database of educational data was 
formed, obtained through a literature search containing the chemical structure and experimentally 
measured thermoelectric properties of materials. These data are presented in table form (Table 2) and 
total 5205 experimental values. 
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Table 2 
Description of the collected characteristics in the ESTM data set [31]. The first value is the 

chemical composition of the collected thermoelectric materials, which must be translated into a 
digital representation when applied in machine learning models, the second value is the temperature. 

Other parameters were obtained either experimentally or theoretically calculated 

Property name 
Units of 

measurement  
Range Average value 

Chemical 
composition 

- - - 

Temperature К [10, 1275] 539.28 ± 192.42 

Seebeck coefficient µV/K [−1174, 1052.4] 73.18 ± 208.92 

Electrical 
conductivity 

S/m (0.9.47E + 07) 1.10E + 05 ± 1.47E + 06 

Thermal 
conductivity 

W / m * К) [0.07, 77.16] 2.25 ± 3.29 

Power factor W / (m * K2) (0. 7.61E − 03) 9.92E − 04 ± 1.12E − 03 

ZT - (0. 2.28) 0.35 ± 0.35 

As a result, based on the collected database, the authors of [31] developed a machine model that 
achieved an accuracy of R2 above 0.9 in predicting 5 thermoelectric properties of materials and showed 
an average absolute error of less than 0.06 when predicting ZT. In addition to the publicly available 
dataset, the authors have developed a method for representing alloys and alloyed materials called 
System Identifiable Material Description (SIMD). Based on transfer learning using SIMD, it was 
possible to improve the R2 from 0.13 to 0.71 when extrapolating to predict the ZT of materials from 
unexplored groups to find new high-performance materials. 

Conclusions 
1. The study of supervised and unsupervised machine learning methods used in thermoelectric 

materials science to optimize existing and search for new promising thermoelectric materials is 
considered. 

2. Thanks to new opportunities, it becomes possible to further develop those areas of science that do 
not contain a perfect fundamental understanding, for example, the spin-driven thermoelectric 
effect, a deep understanding and determination of the interdependence between parameters that 
affect the efficiency of a thermoelectric material. 

3. The accuracy of the latest models is high. However, their further improvement is limited by the 
space of well-studied materials and existing databases of experimentally collected thermoelectric 
properties of materials or theoretically calculated using alternative methods. 

The author expresses his sincere gratitude to his supervisor, Lukyan Ivanovich Anatychuk, for 
the proposed topic of the work and useful remarks. 
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МАШИННЕ НАВЧАННЯ В ТЕРМОЕЛЕКТРИЧНОМУ  
МАТЕРІАЛОЗНАВСТВІ 

У роботі наводяться методи машинного навчання та їхнє застосування в 
термоелектричному матеріалознавстві. Показано результати їхнього застосування, сильні 
сторони та області застосування. Було взято до уваги складнощі, які виникають у процесі 
прогнозування властивостей термоелектричних матеріалів та способи їх подолання. Бібл. 
30, рис. 1, табл. 2. 
Ключові слова: методи машинного навчання, термоелектричне матеріалознавство. 
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