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THERMOELECTRIC COMPOSITES AND  

RECIPROCITY RELATIONS 

The effective kinetic coefficients in macro-inhomogeneous media, their behavior when changing the 
concentration of component phases and setting the percolation threshold are considered. 
Combinations of the effective kinetic coefficients were found  for which the reciprocity relations are 
fulfilled. Bibl. 7, Fig. 4, Tabl. 6. 
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Introduction 

The main charactreristic of randomly inhomogeneous media are effective kinetic coefficients. 

When describing, for instance, electrical conductivity  -σe , when Ohm’s law applies 

σj E .     (1) 

Where j  – electric current density and – E  – electric field strength, and local conductivity  σ r ,

where ... 1/ ...V dV   is volume average and in case of a two-phase medium the conductivity in the

first phase acquires the value 1σ , and in the second phase 2σ . The effective conductivity σe  is defined 

as  

σej E , (2) 

A huge number of articles and monographs [1 – 5] are devoted to the calculation of the effective 
properties of such media, in particular, the calculation of the effective conductivity, thermoEMF and 
elastic properties. One of the successful approximate methods that describe the effective conductivity 
well is the Bruggeman-Landauer approximation [6 – 7], which is often called the mean field 
approximation - MAE. For effective conductivity, it has the form 

 e 1 2

1 2

σ σ σ σ
1 0

2σ σ 2σ σ
e

e e

p p
 

  
 

.      (3) 

Where 1σ   and 2σ  are the values of conductivity in the first and second phases. 
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Now let us turn to thermoelectric phenomena. We shall write down the equations interrelating 

the electric current density - j , the heat flux -q  and the electric field strength E, as well as the 

temperature gradient gradT g as follows 

 σ γ , j E g   

 γ χ , s E g  (4) 

where γ = σα , α is thermoemf, χ = κ/T ,  is thermal conductivity  and for convenience (symmetry in 

system (4)) the flux / Ts q is introduced.  

The effective kinetic coefficients of the thermoelectric system will have the form 

 σ γe e j E g ,  

 γ χe e s E g , (5) 

As it was shown in [8], the task of calculating effective thermoelectric coefficients can be 
reduced (in certain cases) to the task of determining the effective electrical conductivity in a system 
where there are no thermoelectric phenomena. In other words, if we know the solution for the effective 
coefficient in a single-flow system, we can find out the solution for the effective kinetic coefficients in 
a two-flow system (for example, with the joint flow of interconnected electric current and heat flux). 
Later on, this method, called the method of isomorphism, was written in various mathematical versions 
and generalized to various problems [9 – 11]. 

Reciprocity relations for single-flow (conductivity) system 

There is a special class of two-dimensional two-phase media such that the effective 
conductivity (1) is isotropic and that when the local conductivities of the phases are interchanged, the 
effective conductivity remains unchanged. One of the many examples of the deterministic structure 
of such media is a checkerboard, where black cells are one phase, white cells are another, other 
examples are given in [12]. Randomly inhomogeneous media with half concentration of phases also 
belongs to this class of media. As was precisely shown in [13, 14], the effective conductivity of such 
a medium is equal to 

1 2σ = σ σe .                         (6) 

In the case when in randomly inhomogeneous media the concentration of phases is 1 / 2p  , the 

reciprocity relation holds [13, 14] 

       1 2σ σ 1 σσe ep p   ,           (7) 

that is, the product of two functions that depend on the concentration    σ σ 1e ep p   is 

concentration-independent 
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Fig. 1. Concentration dependence of the product of effective conductivities  

in a three-dimensional random-inhomogeneous medium.  

For example, 1σ 1,  2
2σ 10   is selected  

(in conventional units) 

The analysis of this behavior of randomly inhomogeneous two-phase media by the approximate 
method of the mean field theory - MAE gives the same result. 

Naturally, in randomly inhomogeneous three-dimensional media, as shown in Fig. 1, there is no 
such behavior. 

For the concentration dependence of the effective conductivity, there is a specific parameter -

cp . With great heterogeneity, that is, with a large value of the phase conductance ratio 1 2σ / σ 1, the 

effective conductivity experiences a sharp change in behavior during the passage of the concentration 
through the so-called percolation threshold A sharp change in the behavior of effective conductivity is 
associated with the appearance in the medium of the so-called infinite cluster, a continuous path along 
one of the phases through the entire system [1, 5]. In the framework of the mean field approximation - 

MAE it has the value of the percolation threshold in the three-dimensional case 1 / 3cp  , and in the 

two-dimensional case 1 / 2cp  . At the same time, different values of percolation threshold are 

observed in different real composites. In this regard, in [15] a modification of MAE was proposed, which 

allows describing three-dimensional composites with a predetermined percolation threshold cp , not 

necessarily equal to 1/3.  

 
1 2

1 2

1 2
c c

1 2

σ σ σ σ

2σ σ 2σ σ
1 0

σ σ σ σ
1 ( , ) 1 ( , )

2σ σ 2σ σ

e e

e e

e e

e e

p p
c p p c p p

 
 

  
 

 
 

 
,        (8) 

where ( , )cc p p is the Sarychev-Vinogradov term 
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c c
c c

1
c c1

( , ) (1 3 )
1

p p
p p

c p p p
p p

   
        

 
 

  .           (9) 

Later, this approach, which uses the introduction of some term in the Bruggeman-Landauer 
equation, was generalized to the two-dimensional case, to anisotropic structures, and to describe elastic 
phenomena [16 – 19]. 

In the future, we will explore the possibility of the existence of reciprocity relations between 
media with different percolation thresholds. 

Reciprocity relations for the effective kinetic coefficients of thermoelectric composites 

To analyze the behavior of the effective kinetic coefficients in thermoelectric media, we use the 
isomorphism method [20]. Let us first consider the two-dimensional case. In the absence of 

thermoelectric phenomena (i.e., at 1α 0, 2α 0  ) the system degenerates into two mutually incoherent 

relations - Ohm's law and Fourier's law, while for each of their effective coefficients (effective 
conductivity and thermal conductivity) the reciprocity relations are satisfied. In the presence of 
thermoelectric phenomena, the reciprocity relations are not fulfilled. As can be seen from Fig. 2, the 
normalized products of effective conductivities and thermoelectric coefficients are no longer constant 
with a change in concentration 

      
  2

σ σ 1
σ

σ 1 / 2

e e

e c

p p
p

p


 

   
,      

  2

α α 1
α

α 1 / 2

e e

e c

p p
p

p


 

   
      (10) 

 

Fig. 2. Two-dimensional case. Concentration dependence of normalized products of conductivity and 

thermoelectric coefficients -  σ p - upper curve and  α p - lower curve. For example, the following values of 

local kinetic coefficients were chosen: 7 1 1
1 O m5 10 h m    , 1 0.1 /W m  , 1 0 /V K  , 

4 1 1
2 3.207 10 Ohm m    , 3

2 3.3 10 /W m   , 2 6.414 /V K  , 300T K  

Thus, in thermoelectric systems, the effective kinetic coefficients individually do not satisfy the 
reciprocity relations. However, as the isomorphism method states, the two-flow problem is reduced to a 
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single-flow problem, with one effective kinetic coefficient for which, naturally, the reciprocity relation 
must hold. This means that it is possible, using isomorphism “in the opposite direction” (moving from 
a single-flow system to a two-flow system), to find those combinations of effective kinetic coefficients 
for which a reciprocity relation will take place in a two-flow system. 

Isomorphism method 

Here we will turn to the version proposed by A. Dykhne [20] (see [5] for details). 
We will reduce the local two-flow system (4) to a single-flow system, for this we will add the first 

equation (4) to the second multiplied by some constant K  

   σ γ γ χK K K    j s E g ,     (11) 

where σ, α, γ  and χ  are coordinate-dependent and acquire the values 1 1 1σ ,γ ,χ  –  in the first and 

2 2 2σ , γ ,χ  – in the second phases. 

Rewriting (11) in the form 

  γ χ
σ γ

σ γ

K
K K

K

 
     

j s E g        (12) 

we can introduce a new “current” i  and a new field ε   

K i j s ,   γ χ

σ γ

K

K


 


ε E g .                    (13) 

In the stationary case under consideration, for fields and currents the following equations hold 

 0, 0 , 0, 0div div rot rot   j s E g  (14) 

The new «field»-ε and «current»- i  must obey similar equations 

 0, 0div rot i ε , (15) 

which define a single-flow system 

 f i ε , (16) 

where  f r is the kinetic coefficient of a new single-flow system (an analog to conductivity). 

To fulfill equations (15), it is necessary that the factor near g  does not depend on the 

coordinates, that is, that it has the same value in both phases - we denote it byω  . This requirement 

can be written as follows 

 1 1 2 2

1 1 2 2

γ χ γ χ
ω

σ γ σ γ

K K

K K

 
 

 
. (17) 

Equation (17) defines two possible values for the constants K and ω 
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    

 

2

2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1

1,2
1 2 2 1

χ σ χ σ χ σ χ σ 4 χ γ χ γ γ σ γ σ

2 χ γ χ γ
K

     



  (18) 

Writing similar (12, 13, 16) equations for averaged fields and currents, we obtain, in particular, the 
averaged Ohm's law (for a single-flow medium) 

 
efi ε , (19) 

where now the role of local conductivity in the first and second phases 1 2σ , σ
 will be played by 

conductivities 1 2μ , μ   

 1 1 1 2 2 2μ σ γ , μ σ γK K    . (20) 

It should be noted that there are two pairs of local effective kinetic coefficients 1μ  and 2μ , that 

depend on 1K  and one pair 1μ  and 2μ , that depends on 2K . 

Thus, given that two values of the constant are possible (18), law (16) can be written as follows 

 
 
 

1 1 1

2 2 2

ω ,

ω ,

e

e

K f

K f

  

  

j s E g

j s E g
 (21) 

where it is taken into account that constant ω  similar to constant K  can take on two values and 

    1 1 2 1 1 2 1 2 2 2μ ,μ , ,ω , μ ,μ , ,ωe e e ef f K f f K  . (22) 

Now we find from (22) the expressions for j
 
 and s   

 

2 1 1 2 2 1 1 1 2 2

2 2 2 2

1 2 1 1 2 2

2 2 2 2

ω ω
,

ω ω

e e e e

e e e e

K f K f K f K f

K K K K

f f f f

K K K K

 
 

 

 
 

 

j E g

s E g

  (23) 

Thus, knowing the dependence of the effective kinetic coefficients of a single-flow system on 
the local kinetic coefficients and concentration, it is possible to obtain similar dependences for the 
effective kinetic coefficients of a thermoelectric (two-flow) system from (23). Indeed, comparing (23) 

and (5), σ ,αe e  and χ e  can be written as 

 
2 1 1 2 2 1 1 1 2 2 1 1 2 2

2 2 2 1 1 2 2 2

ω ω ω ω
σ , α , χ

e e e e e e

e e ee e

K f K f K f K f f f

K K K f K f K K

  
  

  
. (24) 
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Reciprocity relations of thermoelectric composites 

The isomorphism method described above explains why the effective kinetic coefficients do not 
directly give the reciprocity relation. According to [14], the reciprocity relations hold for single-flow 
two-dimensional randomly heterogeneous media. In this case, for the single-flow system (16), they must 

be present for the effective coefficients  1
ef  and 2

ef  and  we write them in the form 

 
     
     

2

1 2 1 1 2 1 1 2 1

2

1 2 2 1 2 2 1 2 2

μ ,μ , , μ ,μ , ,1 μ ,μ , ,1/ 2 ,

μ ,μ , , μ ,μ , ,1 μ ,μ , ,1/ 2

e e e

e e e

f K p f K p f K

f K p f K p f K

  

  
  (25) 

or in abbreviated notations 

            2 2

1 1 1 2 2 21 1/ 2 , 1 1/ 2e e e e e ef p f p f f p f p f      . (26) 

Thus, the effective kinetic coefficients of thermoelectric systems are a function of local kinetic 

coefficients, found constants (18), effective coefficients of single-flow systems    1 2,e ef p f p . 

Let us now use  (24) and find the expressions for    1 2,e ef p f p
 
through the effective kinetic 

coefficients of thermoelectric systems, for instance, in the form 

    1 1 2 2σ σ α , σ σ αe e
e e e e e ef p K f p K    . (27) 

According to (26) and (27) we can write the reciprocity relations for the effective kinetic coefficients 

of thermoelectric system for 1K   

       1 1σ 1 α σ 1 1 α 1e e e ep K p p K p const               (28) 

And similarly for the second case of constant 2K   

        2 2σ 1 α σ 1 1 α 1e e e ep K p p K p const               (29) 

Numerical analysis for two-dimensional thermoelectric systems  

Let us consider several specific examples of the behavior of the effective kinetic coefficients and 

reciprocity relations. To do this, we normalize expressions (27 - 28) (recall that for the two-dimensional 

case in the standard MAE approximation the percolation threshold is equal to 1/ 2cp  ) 

 

 
       

    

 
       

    

1 1

1 2

1

2 2

2 2

2

σ 1 α σ 1 1 α 1
,

σ 1 α

σ 1 α σ 1 1 α 1
.

σ 1 α

e e e e

e e

e e e e

e e

p K p p K p
p

p K p

p K p p K p
p

p K p

            
   

            
   

, (30) 
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The expressions ef   will be found in the two-dimensional MAE approximation for a single-flow system 

  
1 2

1 2

1 2
c c

1 2

μ μ

μ μ
1 0

μ μ
1 ( , ) 1 ( , )

μ μ

e e

e e

e e

e e

f f

f f
p p

f f
c p p c p p

f f

 
 

  
 

 
 

 
, (31) 

where in the two-dimensional case the term similar to the Sarychev-Vinogradov term has the form 

  c c 1 2
c c

1
c c1

( , ) (1 2 ) μ ,μ
1

p p
p p

c p p p U
p p

   
        

 
 

 
, (32) 

and 

  
1 2

1 2 1 2

1 2

1, μ μ

μ ,μ 0, μ μ

1, μ μ

U


 
 

  (33) 

Substituting the obtained 1
ef and 2

ef  in (20), we find  1 p  
and  2 p . Fig.3 shows the 

concentration behaviour of  σ ,p   α p  
and  1 p from (10) and (30). Naturally, in (10) there is 

the effective conductivity from (24). As can be seen from the figure, the functions  σ ,p  α p  
depend on the concentration, in contrast to  1 p , which is practically independent of the 

concentration, which can be called one of the reciprocity relations for thermoelectric phenomena.  

 
Fig.3 Concentration dependences  σ ,p   α p

 
and  1 p

 
with an unshifted percolation threshold 

1/ 2cp  . For example, the following values of local kinetic coefficients were chosen:  

7 1 1
1 5 10 Ohm m    , 1 0.1 /W m  , 1 0 /КV  , 4 1 1

2 3.207 10 Ohm m    , 

3
2 3.3 10 /W m   , 2 6.414 /V K  , 300T K  
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Note that when the percolation threshold shifts, that is, even with a small deviation of cp  from 

1/2, the expression  1 p  
(and, of course,  2 p ), which was constant, begins to significantly 

depend on the concentration. 

Fig. 4 Concentration dependences    2 1, 1 / 2 , , 1 / 2c cp p p p    ,  

   1 2, 1 / 3 , , 1 / 3c cp p p p    - top down 

In the three-dimensional case, when (8) and (9) hold, the products (30) for the unshifted 

percolation threshold, i.e. when 1 / 3cp  , cease to be independent of the concentration, which is natural 

in general, since a strong dependence on the concentration is also observed in the single-flow case - Fig. 

4. However, when the percolation threshold is shifted, when choosing 1 / 2cp   the reciprocity relations 

are approximately fulfilled. The three-dimensional case deserves a separate detailed analysis. 

Conclusions 

The reciprocity relations written for the effective conductivity (single-flow system) can be 
generalized to the case of thermoelectric phenomena in the two-dimensional case. In the three-
dimensional form, the canonical mean field theory (Bruggeman-Landauer approximation) shows that 
there are no such relations. In the case of a shifted percolation threshold, in the three-dimensional case, 
although approximate, the reciprocity relations take place. 
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ТЕРМОЕЛЕКТРИЧНІ КОМПОЗИТИ ТА  

СПІВВІДНОШЕННЯ ВЗАЄМНОСТІ 

Розглянуто ефективні кінетичні коефіцієнти у макронеоднорідних середовищах, їхня 
поведінка при зміні концентрації фаз компонентів та завданні порога протікання. Знайдено 
комбінації ефективних кінетичних коефіцієнтів, за яких виконуються співвідношення 
взаємності. Бібл. 20, рис. 4. 
Ключові слова: кінетичні коефіцієнти, двофазне середовище, однопотокові системи, 
термоЕРС. 
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