Технологічні режими виготовлення термоелектричних сенсорів медичного призначення
Ключові слова:
технологічний режим, термоелектричний перетворювач, термоелектричний сенсор теплового потоку медичного призначенняАнотація
У роботі наведено технологічні режими виготовлення термоелектричних перетворювачів теплового потоку. Встановлено, що оптимальним термоелектричним матеріалом для термобатареї є низькотемпературні матеріали на основі Bi2Te3. Експериментально підтверджено ефективність використання таких технологічних режимів для виготовлення термоелектричних мікробатарей, здатних реєструвати лазерне випромінювання з покращеним коефіцієнтом перетворення в 1-1.5 порядки у порівнянні з існуючими вимірювальними перетворювачами. Вказані технологічні режими значно спрощують та механізують методику виготовлення термоелектричних сенсорів теплового потоку медичного призначення та мікрогенераторів для живлення малопотужної медичної апаратури.
The paper presents technological modes of manufacturing thermoelectric heat flow converters. It has been established that the optimal thermoelectric material for a thermopile is low-temperature materials based on Bi2Te3. The efficiency of using such technological modes for the production of thermoelectric micro thermopiles capable of recording laser radiation with an improved conversion coefficient of 1-1.5 orders of magnitude compared to existing measuring transducers has been experimentally confirmed. The specified technological modes significantly simplify and mechanize the method of manufacturing thermoelectric heat flow sensors for medical purposes and microgenerators for powering low-power medical equipment.
Посилання
1. Anatychuk L.I. (2003). Thermoelectricity. Vol.2. Thermoelectric power converters. Kyiv, Chernivtsi: Institute of Thermoelectricity.
2. Anatychuk L.I. (1998). Thermoelectricity. Vol.1. Physics of thermoelectricity. Kyiv, Chernivtsi: Institute of Thermoelectricity.
3. Anatychuk L.I. (2007). Current status and some prospects of thermoelectricity. J. Thermoelectricity, 2, 7-20.
4. Demchuk B.M., Kushneryk L.Ya., Rublenyk І.М. (2002). Thermoelectric sensors for orthopaedics. J. Thermoelectricity, 4, 80-85.
5. Patent of Ukraine 53104 А. (2003). Sensor for preliminary diagnosis of inflammatory processes of the mammary glands. А.А.Ashcheulov, A.V.Klepikovsky, L.Ya,. Kushneryk, et al.
6. Ashcheulov A.A., Kushneryk L.Ya. (2004). Thermoelectric device for medico-biological express diagnostics. Technology and Design in Electronic Equipment, 4, 38-39.
7. Patent of Ukraine 71619 (2012). Thermoelectric medical heat meter. L.I.Anatychuk, R.R.Kobylianskyi. Institute of Thermoelectricity (In Ukrainian).
8. Patent of Ukraine 72032 (2012). Thermoelectric sensor for temperature and heat flux measurement. L.I.Anatychuk, R.R.Kobylianskyi. Institute of Thermoelectricity (In Ukrainian).
9. Patent of Ukraine 73037 (2012). Thermoelectric medical device. P.D.Mykytiuk, R.R.Kobylianskyi, T.V.Slepeniuk. Institute of Thermoelectricity (In Ukrainian).
10. Patent of Ukraine 78619 (2013). Method for determination of heat flux density. L.I.Anatychuk, R.R.Kobyliansky. Institute of Thermoelectricity (In Ukrainian).
11. Patent of Ukraine 79929 (2013). Thermoelectric converter of heat flux for gradient heat meters. L.I.Anatychuk. Institute of Thermoelectricity (In Ukrainian).
12. Gischuk V.S. (2012). Electronic recorder of human heat flux sensor signals. J. Thermoelectricity, 4, 105-108.
13. Gischuk V.S. (2013). Electronic recorder with signal processing of thermoelectric heat flux sensor. J. Thermoelectricity, 1, 82-86.
14. Gischuk V.S. (2013). Modernized device for measuring human heat fluxes. J. Thermoelectricity, 2, 91-95.
15. Anatychuk L.I., Kobylianskyi R.R. (2012). Study of the influence of thermoelectric heat meter on determination of human heat release. J. Thermoelectricity,4, 60-66.
16. Anatychuk L.I., Kobylianskyi R.R. (2012). 3D-model for determination of the influence of thermoelectric heat meter on the accuracy of measuring human heat release. Scientific Herald of Chernivtsi University: Collected papers. Physics. Electronics. Vol. 2, Issue 1. Chernivtsi: Chernivtsi National University, 15-20.
17. Anatychuk L.I., Kobylianskyi R.R. (2013). Computer simulation of thermoelectric heat meter readings in real-world operating conditions. J. Thermoelectricity, 1, 53-60.
18. Anatychuk L.I., Giba R.G., Kobylianskyi R.R. On some features of the use of medical heat meters in the study of local human heat release. J. Thermoelectricity,2, 67-73.
19. Anatychuk L.I., Kobylianskyi R.R., Konstantynovich І.А. (2013). On the influence of a thermoelectric power source on the accuracy of temperature and heat flux measurement. J. Thermoelectricity, 6, 53-61.
20. Ivashchuk О.І., Morar І.K., Kobylianskyi R.R., Nepelyak L.V., Deley V.D. (2013). The role of abdominal heat flow in monitoring acute destructive pancreatitis. Abstracts of scientific and practical conference "Current issues in surgery", Chernivtsi, Ukraine, 254-259.
21. Kobylianskyi R.R. (2016). The influence of thermal insulation on the readings of thermoelectric medical sensor. Scientific Herald of Chernivtsi University: Collected papers. Physics. Electronics. Vol. 5, Issue 1. Chernivtsi: Chernivtsi National University, 45-49.
22. Kobylianskyi R.R. (2016). Computer simulation of readings of a medical thermoelectric sensor. J. Thermoelectricity, 4. 69-77.
23. . Gischuk V.S., Kobylianskyi R.R., Cherkez R.G. (2014). Multichannel device for measuring the temperature and density of heat fluxes. Scientific Herald of Chernivtsi University: Collected papers. Physics. Electronics. Vol. 3, Issue. 1. Chernivtsi: Chernivtsi National University, 96-100.
24. The use of thermoelectric heat meters in medical diagnostics. Scientific Herald of Chernivtsi University: Collected papers. Physics. Electronics. Vol. 4, Issue 1. Chernivtsi: Chernivtsi National University, 90-96.
25. Anatychuk L.I., Ivashchuk О.І., Kobylianskyi R.R., Postevka I.D., Bodiaka V.Yu., Gushul I.Ya. (2016). Thermoelectric device for measuring the temperature and density of heat flux "ALTEC-10008". J. Thermoelectricity. 1,76-84.
26. Anatychuk L.I., Yuryk O.E., Kobylianskyi R.R., Roy I.V., Fishchenko Ya.V., Slobodianiuk N.P., Yuryk N.E., Duda B.S. (2017). Thermoelectric device for diagnosing inflammatory processes and neurological manifestations of osteochondrosis of the human spine. J. Thermoelectricity, 3, 54-67.
27. Yuryk O.E., Anatychuk L.I., Roy I.V., Kobylianskyi R.R., Fishchenko Ya.V., Slobodianuk N.P., Yuryk N.E., Duda B.S. (2017). Peculiarities of heat exchange in patients with neurological manifestations of osteochondrosis in the lumbosacral spine. Trauma, 18(6).
28. Anatychuk L.I., Luste O.J, Kobylianskyi R.R. (2017). Information and energy theory of thermoelectric temperature and heat flux sensors for medical purposes. J. Thermoelectricity, 4, 5-20.
29. Anatychuk L.I., Kobylianskyi R.R., Cherkez R.G., Konstantynovych I.A., Hoshovskyi V.I., Tiumentsev V.A. (2017). Thermoelectric device with electronic control unit for diagnostics of inflammatory processes in the human organism. Tekhnologiya i konstruirovanie v elektronnoi apparature – Technology and Design in Electronic Equipment, 6, 44-48.
30. Anatychuk L.I., Ivashchuk О.І., Kobylianskyi R.R., Postevka I.D., Bodiaka V.Yu., Gushul I.Ya., Chuprovska Yu.Ya. (2018). On the influence of ambient temperature on the readings of thermoelectric medical sensors. Sensor Electronics and Microsystem Technologies, 15(1), 17-29.
31. Anatychuk L.I., Pasyechnikova N.V., Naumenko V.O., Zadorozhnyi O.S., Havryliuk M.V., Kobylianskyi R.R. (2018). Thermoelectric device for determination of heat flux from the surface of eyes. J. Thermoelectricity, 5, 52-67.
32. Anatychuk L.I., Kobylianskyi R.R., Konstantynovich І.А. (2014). Calibration of thermoelectric heat flux sensors. Proc. of XV International scientific and practical conference “Modern information and electronic technologies” (Odesa, Ukraine, May 26-30, 2014.) Vol.2, 30-31.
33. Anatychuk L.I., Kobylianskyi R.R., Konstantynovich І.А., Lysko V.V., Pugantseva O.V., Rozver Yu.Yu., Tiumentsev V.A. (2016). Calibration bench for thermoelectric heat flux converters. J. Thermoelectricity, 5, 71-79.
34. Anatychuk L.I., Kobylianskyi R.R., Konstantynovich І.А., Kuz R.V., Manyk О.М., Nitsovich O.V., Cherkez R.G. (2016). Manufacturing technology of thermoelectric microthermopiles. J. Thermoelectricity, 6, 49-54.
35. Anatychuk L.I., Razinkov V.V., Bukharayeva N.R., Kobylianskyi R.R. (2017). Thermoelectric bracelet. J. Thermoelectricity, 2, 58-72.
36. Anatychuk L.I., Todurov B.M., Kobylianskyi R.R., Dzhal S.A. (2019). On the use of thermoelectric microgenerators to power pacemakers. J. Thermoelectricity, 5, 63 – 88.
37. Anatychuk L.I., Yuryk O.E., Strafun S.S., Stashkevich А.Т., Kobylianskyi R.R., Cheviuk A.D., Yuryk N.E., Duda B.S. (2021). Thermometric indicators in patients with chronic low back pain. J. Thermoelectricity, 1, 51 – 64.
38. Chunzhi Wang, Hongzhe Jiao, Lukyan Anatychuk, Nataliya Pasyechnikova, Volodymyr Naumenko, Oleg Zadorozhnyy, Lyudmyla Vikhor, Roman Kobylianskyi, Roman Fedoriv, Orest Kochan (2022). Development of a temperature and heat flux measurement system based on microcontroller and its application in ophthalmology. Measurement Science Review, 22(2), 73-79.
39. Kobylianskyi R.R., Prybyla A.V., Konstantynovich І.А., Boychuk V.V. (2022). Results of experimental investigations of thermoelectric medical heat flux sensors, J. Thermoelectricity, 3-4, 70 – 83.
40. Yuryk O., Anatychuk L., Kobylianskyi R., Yuryk N. (2023). Measurement of heat flux density as a new method of diagnosing neurological diseases. Kharkiv: PC Technology Center, 31–68.