Research of Thermoelectric Material Ti1-xNbxNiSn

Authors

DOI:

https://doi.org/10.63527/1607-8829-2025-1-5-15

Keywords:

thermoelectric material, thermoelectric figure of merit, electronic structure, electrical resistivity, thermopower coefficient

Abstract

The structural, kinetic, energetic, and magnetic properties of the semiconductor thermoelectric material Ti1-xNbxNiSn, obtained by doping n-TiNiSn with Nb atoms, have been studied. It has been shown that Nb atoms (4d45s1) simultaneously occupy different crystallographic positions, generating structural defects of donor and acceptor nature. At Ti1-xNbxNiSn concentrations, х=0–0.04, Nb atoms predominantly replace Ti (3d24s2) and Ni (3d84s2) atoms present there in position 4a, generating donor and acceptor states in the band gap εg, respectively. At higher concentrations, х˃0.04, Nb atoms replace only Ti atoms, generating structural defects and energetic states of donor nature. It is shown that the semiconducting solid solution Ti1-xNbxNiSn is a promising thermoelectric material, and at T≈650 K and Ti0.99Nb0.01NiSn concentration ZT is equal to 0.76. The studies allowed us to identify the mechanisms of electrical conductivity to determine the conditions for the synthesis of thermoelectric materials Ti1-xNbxNiSn with maximum efficiency of converting thermal energy into electrical energy.

References

1. Anatychuk L.I. (1998). Thermoelectricity. Physics of thermoelectricity, Institute of Thermoelectricity, Kyiv, Chernivtsi, Vol. 1, 376 p.

2. Romaka V.A., Frushart D., Stadnyk Yu.V., Tobola J., Gorelenko Yu.K., Shelyapina M.G., Romaka L.P., Chekurin V.F. (2006). Conditions for attaining the maximum values of thermoelectric power in intermetallic semiconductors of the MgAgAs structural type. Semiconductors, 40 (11), 1275 – 1281. DOI: https://doi.org/10.1134/S1063782606110054.

3. Marazza R., Ferro R., Rambaldi G. (1975). Some phases in ternary alloys of titanium, zirconium, and hafnium, with a MgAgAs or AlCu2Mn type structure. J. Less-Common Met., 39, 341 – 345. (DOI: https://doi.org/10.1016/0022-5088(75)90207-6).

4. Romaka V.A., Shelyapina M.G., Gorelenko Yu.K., Frushart D., Stadnyk Yu.V., Romaka L.P., Chekurin V.F. (2006). Special Features of Conductivity Mechanisms in Heavily Doped n-ZrNiSn Intermetallic Semiconductors. Semiconductors, 40 (6), 655 – 661. (DOI: https://doi.org/10.1134/S106378260606008X).

5. Romaka V.A., Stadnyk Yu.V., Romaka V.V., Fruchart D., Gorelenko Yu.K., Chekurin V.F., Horyn A.M. (2007). Features of electrical conductivity in the n-ZrNiSn intermetallic semiconductor heavily doped with the In acceptor impurity. Semiconductors, 41 (9), 1041 – 1047. (DOI: https://doi.org/10.1134/S1063782607090072).

6. Romaka V.A., Stadnyk Yu.V., Akselrud L.G., Romaka V.V., Fruchart D., Rogl P., Davydov V.N., Gorelenko Yu.K. (2008). Mechanism of Local Amorphization of a Heavily Doped Ti1-xVxCoSb Intermetallic Semiconductor. Semiconductors, 42 (7), 753 – 760. (DOI: 10.1134/S1063782608070014).

7. Romaka V.A., Rogl P., Romaka V.V., Hlil E.K., Stadnyk Yu.V., and Budgerak S.M. (2011). Features of a priori Heavy Doping of the n-TiNiSn Intermetallic Semiconductor. Semiconductors, 45 (7), 879 – 885. DOI: 10.1134/S1063782611070190.

8. Roisnel T., Rodriguez-Carvajal J. (2001). WinPLOTR: a windows tool for powder diffraction patterns analysis, Mater. Sci. Forum, Proc. EPDIC7 378 – 381, 118 – 123. DOI: https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.

9. Schruter M., Ebert H., Akai H., Entel P., Hoffmann E., Reddy G.G. (1995). First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Phys. Rev. B, 52, 188 – 209. DOI: https://doi.org/10.1103/PhysRevB.52.188.

10. Moruzzi V.L., Janak J.F., Williams A.R. (1978). Calculated electronic properties of metals. Pergamon Press, NY, 348 р. DOI: https://doi.org/10.1016/B978-0-08-022705-4.50002-8.

11. Shklovskii B.I. and Efros A.L. (1984). Electronic properties of doped semiconductors. Berlin, Heidelberg, NY, Tokyo, Springer-Verlag, 388 p. DOI: 10.1007/978-3-662-02403-4.

12. Mott N.F. and Davis E.A. (2012). Electron processes in non-crystalline materials. Oxford, Clarendon Press, 590 p. DOI: https://doi.org/10.1002/crat.19720070420.

Downloads

How to Cite

Romaka, V., Stadnyk, Y., Romaka, L., Horyn, A., Romaka, V., & Haraniuk, P. (2025). Research of Thermoelectric Material Ti1-xNbxNiSn. Journal of Thermoelectricity, (1), 5–15. https://doi.org/10.63527/1607-8829-2025-1-5-15

Issue

Section

Materials research

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.