Features of renormalization of the electronic spectrum by confined phonons in a semiconductor nanostructure quantum dot-quantum ring

Authors

  • I.S. Hnidko 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • O.M. Makhanets 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0003-4598-2039

Keywords:

quantum dot, quantum ring, electron, phonon, energy spectrum, thermoelectric material

Abstract

In the model of effective masses and rectangular potential energies for the electron and the model of the dielectric continuum for phonons, the theory of renormalization of the electronic energy spectrum by interaction with confined phonons in the semiconductor (GaAs/AlxGa1-xAs) nanostructure quantum dot – quantum ring is constructed. The renormalized energy spectrum was found using the Green's function method by solving Dyson's equation. Dependencies of partial and full shifts of the main electronic energy level in the long-wave spectrum region on the geometric parameters of the semiconductor nanostructure were analyzed. Bibl 16, Figs. 2.

References

1. Kuroda T., Mano T., Ochiai T., Sanguinetti S., Sakoda K., Kido G. and Koguchi N. (2005).Optical transitions in quantum ring complexes. Physical Review B 72 (20), 205301; https://doi.org/10.1103/PhysRevB.72.205301.

2. Young Joon Hong, Rajendra K. Saroj, Won Park, Gyu-Chul Yi (2021). One-dimensional semiconductor nanostructures grown on two-dimensional nanomaterials for flexible device applications. APL Mater. V. 9, 060907; https://doi.org/10.1063/5.0049695.

3. Pham V.D., Kanisawa K. and Folsch S. (2019). Quantum rings engineered by atom manipulation. Phys. Rev. Lett. 123, 066801; https://doi.org/10.1103/PhysRevLett.123.066801.

4. Suarez F., Granados D., Dotor M.L., Garcia J.M. (2004) Laser devices with stacked layers of InGaAs/GaAs quantum rings. Nanotechnology 15, S126 – S130; https://doi.org/10.1088/0957-4484/15/4/003.

5. Dai J.H., Lin Y., Lee S. Ch. (2007). Voltage tunable dual band In(Ga)As quantum ring infrared photodetector. IEEE Photonics Technology Letters 19 (19), 1511 – 1513; https://doi.org/10.1109/LPT.2007.903344.

6. Szopa M.J., Zipper E. (2010). Flux qubits on semiconducting quantum ring. Journal of Physics: Conference Series 213, 012006; http://doi.org/10.1088/1742-6596/213/1/012006.

7. Llorens J.M., Trallero-Giner C., Garcıa-Cristobal A., Cantarero A. (2001). Electronic structure of a quantum ring in a lateral electric field. Physical Review B 64, 035309; https://doi.org/10.1103/PhysRevB.64.035309.

8. Llorens J.M., Trallero-Giner C., Garcia-Cristobal A., Cantarero A. (2002). Energy levels of a quantum ring in a lateral electric field. Microelectronics Journal 33, 355 – 359; http://doi.org/10.1016/S0026-2692(01)00131-8.

9. Konstantinovich, A.V. and Konstantinovich, I.A. (2011) Oscillations and coherent radiation of harmonics in radiation spectrum of system of electrons moving in spiral in medium. Problems of Atomic Science and Technology, (5), 67–74.

10. Konstantinovich, A.V. and Konstantinovich, I.A. (2008) Oscillations in radiation spectrum of electron moving in spiral in transparent medium and vacuum. Astroparticle Physics, 30(3), 142–148.

11. Konstantinovich, A.V. and Konstantinovich, I.A. (2008) Radiation spectrum of the system of electrons moving in a spiral in transparent medium. Romanian Reports of Physics, 53(3-4), 507–515.

12. Konstantinovich, A.V. and Konstantinovich, I.A. (2007) Radiation spectrum of an electron moving in a spiral in medium. Condensed Matter Physics, 10(1), 5–9.

13. Konstantinovich, A.V., Melnychuk, S.V. and Konstantinovich, I.A. (2006) Radiation spectrum of an electron moving in a spiral in magnetic field in transparent media and in vacuum. Journal of Materials Science: Materials in Electronics, 17(4), 315–320.

14. Konstantinovich, A.V. and Konstantinovich, I.A. (2006) Radiation power spectral distribution of the system of electrons moving in a spiral in vacuum. Journal of Optoelectronics and Advanced Materials, 8(6), 2143–2147.

15. Konstantinovich, A.V., Melnychuk, S.V. and Konstantinovich, I.A. (2003) Radiation power spectral distribution of charged particles moving in a spiral in magnetic fields. Journal of Optoelectronics and Advanced Materials, 5(5), 1423–1431.

16. Culchac F.J., Porras-Montenegro N., Granada J.C. and Latge A. (2008). Energy spectrum in a concentric double quantum ring of GaAs-(Ga, Al)As under applied magnetic fields. Microelectronics Journal 39, 402 – 406; https://doi.org/10.1016/j.mejo.2007.07.063.

17. Culchac F.J., Porras-Montenegro N., Latge A.(2008). GaAs-(Ga, Al)As double quantum rings: confinement and magnetic field effects. J. Phys.: Condens. Matter 20 (28), 285215; http://doi.org/10.1088/0953-8984/20/28/285215.

18. Маkhanets О.М., Gutsul V.I., Kuchak A.I. (2017). Electron energy spectrum and oscillator strengths of intra-band quantum transitions in double semiconductor nanorings in magnetic field. Journal of Nano- and Electronic Physics 9, 06015; http://doi.org/10.21272/jnep.9(6).06015.

19. Makhanets O.M., Gutsul V.I., Kuchak A.I. (2018). Electron energy spectrum and oscillator strengths of quantum transitions in double quantum ring nanostructure driven by electric field. Condensed Matter Physics 21 (4), 43704; https://doi.org/10.48550/arXiv.1812.08551.

20. Makhanets O.M., Gutsul V.I., Koziarskyi I.P., and Kuchak A.I.(2021), Spectral parameters of an exciton in double semiconductor quantum rings in an electric field. Journal of Nano- and Electronic Physics 13 (2), 02024; https://doi.org/10.21272/jnep.13(2).02024.

21. Shahbandari A., Yeranosyan M.A., Vartanian A.L. (2013). Polaron states in a double quantum ring structure in the presence of electric and magnetic fields. Superlattices and Microstructures 57, 85 – 94; https://doi.org/10.1016/j.spmi.2013.01.011

22. Hlukhov K.E., Kharkhalis L.Yu., Babuka T.Ya., Liakh M.V. (2020). Ab initio studies of electron-phonon interaction in indium khalcogenides. Ukrainian Journal of Physics, 8 (65), 1210 – 1218.

23. Fan D.D., Liu H.J., Cheng L., Liang J.H., Jiang P.H.(2018). First-principles study of the effects of electron-phonon coupling on the thermoelectric properties: a case study of SiGe compound. Journal of Applied Physics, 123(12), 125104.

24. Cao J., Dangić Đ., Querales-Flores J.D., Fahy S., Savić I. (2021). Electron-phonon coupling and electronic thermoelectric properties of n-type PbTe driven near the soft-mode phase transition via lattice expansion. Physical Review B, 103 (12), 125 – 207.

25. Prete D., Erdman P.A., Demontis V., Zannier V., Ercolani D., Sorba L., Beltram F., Rossella F., Taddei F., Roddaro S.(2019). Thermoelectric conversion at 30 K in InAs/InP nanowire quantum dots. Nano Letters, 19 (3), 2022 – 2030.

26. van Houten H., Molenkamp L.W., Beenakker C.W.J., Foxon C.T. (1992). Thermo-electric properties of quantum point contacts. Semiconductor Science and Technology, 7, B215 – B221.

27. Freik D.M., Lopianko M.A. (2013). Nanostructured thermoelectric materials: problems, technologies, properties (review). Physics and Chemistry of the Solid State, 14 (2), 280 – 299.

28. Iliinska О.О. (2015). Quantum electromechanical and thermoelectric effects in naosystems with spin-polarized electrons: Candidate’s Thesis (Phys &Math). Kharkiv: Institute of Low Temperature Physics of the NAS of Ukraine.

29. R.R. Kobylianskyi, V.V. Lysko, A.V. Prybyla, I.A. Konstantynovych, A.K. Kobylianska, N.R. Bukharaeva, V.V. Boychuk (2023) Technological modes of manufacturing thermoelectric sensors for medical purposes. Journal of Thermoelectricity, (4), 49–63.

30. L.I. Anatychuk , R.R Kobylianskyi, V.V. Lysko, A.V. Prybyla, I.A. Konstantinovych, A.K. Kobylyanska, M. V. Havrylyuk, V.V. Boychuk (2023) Method of calibration of thermoelectric sensors for medical purposes. Journal of Thermoelectricity, (3), 37–49.

31. L.I. Anatychuk, R.R. Kobylianskyi, R.V. Fedoriv, I.A. Konstantynovych (2023) On the prospects of using thermoelectric cooling for the treatment of cardiac arrhythmia. Journal of Thermoelectricity, (2), 5–17.

32. I.A. Konstantynovych, R.V. Kuz, O.M. Makhanets, R.G. Cherkez (2023) Sectional generator thermoelements in a magnetic field. Journal of Thermoelectricity, (1), 75–81.

33. R.R Kobylianskyi, A.V. Prybyla, I.A. Konstantynovych, V.V. Boychuk (2022) Results of experimental research on thermoelectric medical heat flow sensors. Journal of Thermoelectricity, (3-4), 68–81.

34. Anatychuk, L.I., Kobylianskyi, R.R., Prybyla, A.V., Konstantynovych, I.A. Boychuk, V.V. (2022) Computer simulation of the thermoelectric heat flow sensor on the surface of the human body. Journal of Thermoelectricity, (2), 46–60.

35. Anatychuk, L.I., Kobylianskyi, R.R., Konstantynovych, I.A., Kuz, R.V., Manik, O.M. Nitsovych, O.V., Cherkez, R.G. (2016) Technology for manufacturing thermoelectric microthermopiles. Journal of Thermoelectricity, (6), 49–53.

36. Anatychuk, L.I., Kobylianskyi, R.R., Konstantinovich, I.A., Lysko, V.V., Puhantseva, O.V., Rozver, Y.Y., Tiumentsev, V.A. (2016) Calibration bench for thermoelectric converters of heat flux. Journal of Thermoelectricity, (5), 65–72.

37. Koga T., Sun X., Cronin S.B., Dresselhaus M.S. (1998). Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices. Appl. Phys. Lett. 73, 2950 (1998).

38. P.Y. Yu. M. Cardona (2001). Transmission of terahertz acoustic waves through graphene-semiconductor layered structures. – Physics and Material Properties. – 3rd ed. Berlin, Springer.

39. Hnidko I.S., Gutsul V.I., Koziarskyi I.P., Makhanets O.M. (2022). The exciton spectrum of the cylindrical quantum dot-quantum ring semiconductor nanostructure in an electric field. Physics and Chemistry of Solid State. 23, 793 – 800.

40. Tkach M.V. (2003). Quasiparticles in nanoheterosystems. Quantum dots and wires. Chernivtsi: Ruta.

How to Cite

Hnidko, I., & Makhanets, O. (2024). Features of renormalization of the electronic spectrum by confined phonons in a semiconductor nanostructure quantum dot-quantum ring. Journal of Thermoelectricity, (1-2), 9–22. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/152

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.