Measuring the thermal resistance of a “metal-thermolectric material” contact structure using a comprehensive absolute method for determining parameters of thermoelectric materials

Authors

  • V.V. Lysko 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0001-7994-6795
  • K.I. Strusovskyi Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynsky str., 58000, Chernivtsi, Ukraine

Keywords:

thermal contact resistance, measurement, computer simulation, accuracy, thermoelectric power converters

Abstract

The paper discusses the possibility of measuring the thermal resistance of a” metal-thermoelectric material” contact structure using a comprehensive absolute method for determining the thermoelectric properties of materials. It describes the measurement technique and provides the results of studies of possible measurement errors obtained by constructing a physical model as close as possible to real conditions and computer simulation. The influence of radiation, heat loss through conductors, and other factors on the accuracy of measurements is determined. The conditions for minimizing measurement errors are established.

References

1. Tritt T., 2000. Recent Trends in Thermoelectric Materials Research, Part Two (Semiconductors and Semimetals, Volume 70). Academic Press, ISBN 978-0127521794.

2. Rowe D.M., 2006. Thermoelectrics Handbook: Macro to Nano (1st ed.). CRC Press. Available at: https://doi.org/10.1201/9781420038903.

3. Rowe D.M. (Ed.), 2012. Modules, Systems, and Applications in Thermoelectrics (1st ed.). CRC Press. Available at: https://doi.org/10.1201/b11892.

4. Kania T., Schilder B., Kissel T., et al., 2013. Development of a Miniaturized Energy Converter Without Moving Parts. Flow Turbulence Combust, 90, 741 – 761. Available at: https://doi.org/10.1007/s10494-012-9418-8.

5. Yuan C., Hohlfeld D., Bechtold T., 2021. Design optimization of a miniaturized thermoelectric generator via parametric model order reduction. Microelectronics Reliability, 119, 114075. Available at: https://doi.org/10.1016/j.microrel.2021.114075.

6. Vondrak J., Schmidt M., Proto A., Penhaker M., Jargus J., Peter L., 2019. Using Miniature Thermoelectric Generators for Wearable Energy Harvesting. 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 1–6. Available at: https://doi.org/10.23919/SpliTech.2019.8782997.

7. Dalkiranis G.G., Bocchi J.H.C., Oliveira Jr. O.N., Faria G.C., 2023. Thermoelectric materials and their applications in energy harvesting. ACS Omega, 8(10), 9364 – 9370. Available at: https://doi.org/10.1021/acsomega.2c07916.

8. Li J., Ma B., Wang R., Han L., 2011. Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron. Reliab., 51, 2210 – 2215.

9. Shen L., Chen H., Xiao F., Yang Y., Wang S., 2014. The step-change cooling performance of miniature thermoelectric module for pulse laser. Energy Convers. Manag., 80, 9 – 45.

10. Zhang W., Shen L., Yang Y., Chen H., (2015). Thermal management for a micro semiconductor laser based on thermoelectric cooling. Appl. Therm. Eng., 90, 664 – 673.

11. Piotrowski A., Piotrowski J., Gawron W., Pawluczyk J., Pedzinska M., (2009). Extension of usable spectral range of Peltier cooled photodetectors. Acta Phys. Pol. A, 116, s52 – s55.

12. Vikhor L.M., Anatychuk L.I., Gorskyi P.V. (2019). Electrical resistance of metal contact to Bi2Te3 based thermoelectric legs. J. Appl. Phys., 126, 164503-1 – 164503-8.

13. Anatychuk L.I., Vikhor L.M., Mitskaniuk N.V. (2019). Contact resistance due to potential barrier at thermoelectric material–metal boundary. J. Thermoelectrics, 4, 74 – 88.

14. Vikhor L., Kotsur M. (2023). Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts. Energies, 16, 4082-1–22. Available at: https://doi.org/10.3390/en16104082.

15. Vikhor L.M., Gorskyi P.V., Lysko V.V. (2022). Methods for measuring contact resistances of “metal – thermoelectric material” structures (part 1). J. Thermoelectrics, 2, 5 – 24.

16. Vikhor L.M., Gorskyi P.V., Lysko V.V. (2022). Methods for measuring contact resistances of “metal – thermoelectric material” structures (part 2). J. Thermoelectrics, 3-4, 5 – 17.

17. ASTM, 2009. Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique E1225–09.

18. McWaid T., Marshall E., 1992. Thermal contact resistance across pressed metal contacts in a vacuum environment. Int. J. Heat Mass Transfer, 35(11), 2911 – 2920.

19. Anatychuk L.I., Havryliuk M.V., Lysko V.V. (2015). Absolute Method for Measuring Thermoelectric Properties of Materials. Mater. Today: Proc., 2(2), 737 – 743. Available at: https://doi.org/10.1016/j.matpr.2015.05.110.

20. Anatychuk L.I., Lysko V.V. (2014). On Improvement of the Accuracy and Speed in the Process of Measuring Characteristics of Thermoelectric Materials. J. Electron. Mater., 43(10), 3863 – 3869. Available at: https://doi.org/10.1007/s11664-014-3300-5.

21. Anatychuk L.I., Lysko V.V. (2012). Investigation of the effect of radiation on the precision of thermal conductivity measurement by the absolute method. J. Thermoelectrics, 1, 65 – 73.

22. Anatychuk L.I., Lysko V.V. (2012). Modified Harman's method. AIP Conf. Proc., 1449, 373 – 376. Available at: https://doi.org/10.1063/1.4731574.

23. Anatychuk L.I., Havrylyuk N.V., Lysko V.V. (2012). Methods and equipment for quality control of thermoelectric materials. J. Electron. Mater., 41(6), 1680 – 1685. Available at: https://doi.org/10.1007/s11664-012-1973-1.

24. Anatychuk L.I., Lysko V.V. (2021). Determination of the temperature dependences of thermoelectric parameters of materials used in generator thermoelectric modules with a rise in temperature difference. J. Thermoelectrics, 2, 71 – 78.

25. Anatychuk L.I., Lysko V.V. (2021). Method for determining the thermoelectric parameters of materials forming part of thermoelectric cooling modules. J. Thermoelectrics, 3, 71 – 82.

26. Anatychuk L.I., Kobylianskyi R.R., Konstantinovich I.A., Lys'ko V.V., Puhantseva O.V., Rozver Y., Tiumentsev V.A. (2016). Calibration bench for thermoelectric converters of heat flux. J. Thermoelectrics, 5, 65 – 72.

27. Anatychuk L.I., Lysko V.V., Havryliuk M.V. (2018). Ways for quality improvement in the measurement of thermoelectric material properties by the absolute method. J. Thermoelectrics, 2, 90 – 100.

28. Anatychuk L.I., Lysko V.V., Havryliuk M.V., Tiumentsev V.A. (2018). Automation and computerization of measurements of thermoelectric parameters of materials. J. Thermoelectrics, 3, 80 – 88.

29. COMSOL, 2021. COMSOL Multiphysics, v. 6.0. COMSOL AB, Stockholm, Sweden. Available at: www.comsol.com.

30. Huebner K.H., Dewhirst D.L., Smith D.E., Byrom T.G. (2001). The Finite Element Method for Engineers, 4th Edition. Wiley-Interscience, 744 p. ISBN 978-0-471-37078-9.

31. Reddy J.N., 2005. An Introduction to the Finite Element Method, 3rd Edition. McGraw-Hill Mechanical Engineering, 784 p.

32. Anatychuk L.I., Vikhor L.M. (2012). Thermoelectricity: Vol. 4. Functionally Graded Thermoelectric Materials. Institute of Thermoelectricity, Chernivtsi, Ukraine, 172 p. ISBN 978-966-399-411-6.

How to Cite

Lysko, V., & Strusovskyi, K. (2024). Measuring the thermal resistance of a “metal-thermolectric material” contact structure using a comprehensive absolute method for determining parameters of thermoelectric materials. Journal of Thermoelectricity, (1-2), 46–60. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/156

Issue

Section

Materials research

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.