Computer-aided design of thermoelectric microcalorimetric sensors

Authors

  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0002-4664-3162
  • V.V. Lysko 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0001-7994-6795
  • V.V. Boychuk Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynsky str., 58000, Chernivtsi, Ukraine

Keywords:

software, thermoelectric microcalorimetric sensors

Abstract

The paper deals with the design and development of thermoelectric microcalorimetric sensors for use in low-power reaction chambers. The physical and mathematical aspects of the sensitivity and response speed of sensors made of Bi-Te semiconductor material and copper-constantan-based metal legs with appropriate geometric arrangements of the legs are investigated. The paper presents a computer design algorithm, depicted as a block diagram, and also demonstrates the development of a program for automating the design process with subsequent implementation of the software. Practical examples of the development and analysis of the calculated parameters for two types of sensors are presented to identify their advantages in measuring low thermal powers and fast processes, respectively.

References

1. Anatychuk L.I. (2003). Thermoelectricity. Vol. 2. Thermoelectric power converters. Kyiv, Chernivtsi: Institute of Thermoelectricity.

2. Anatychuk L.I. (1998). Thermoelectricity. Vol.1. Physics of Thermoelectricity. Kyiv, Chernivtsi: Institute of Thermoelectricity.

3. Anatychuk L.I. (2007). Current status and some prospects of thermoelectricity. J. Thermoelectricity, 2, 7 – 20.

4. Smith S.J., Adams J.S., Bandler S.R., Borrelli R.B., Chervenak J.A., Cumbee R.S. et al. (2023). Development of the microcalorimeter and anticoincidence detector for the Line Emission Mapper x-ray probe. J. Astron. Telesc. Instrum. Syst. 9 (4) 041005 https://doi.org/10.1117/1.JATIS.9.4.041005.

5. Mantegazzini F., Kovac N., Enss C., Fleischmann A., Griedel M., Gastaldo L. (2023). Development and characterisation of high-resolution microcalorimeter detectors for the ECHo-100k experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 1055, 168564, https://doi.org/10.1016/j.nima.2023.168564.

6. Biffi V., ZuHone J.A., Mroczkowski T., Bulbul E., Forman W. (2022). The velocity structure of the intracluster medium during a major merger: Simulated microcalorimeter observations. A&A 663 A76 Published online: 2022-07-14 DOI: https://doi.org/10.1051/0004-6361/202142764

7. Zhao Yue, Wang Hubing, Gao Bo, Wang Zheng (2023). Characterizations of the electrothermal parameters of a transition edge sensor microcalorimeter and its energy resolution. Superconductivity, 7, 100051, https://doi.org/10.1016/j.supcon.2023.100051.

8. Choiński D., Wodołażski A., Skupin P., Malcher A., Bernacki K. (2021). Modeling and CFD simulation of an isothermal heat flow microcalorimeter. Sensors and Actuators A: Physical, 331, 112999, https://doi.org/10.1016/j.sna.2021.112999.

9. Wang Ye, Zhu Hanliang, Feng Jianguo, Neuzil Pavel. (2021). Recent advances of microcalorimetry for studying cellular metabolic heat. TrAC Trends in Analytical Chemistry, 143, 116353, https://doi.org/10.1016/j.trac.2021.116353.

10. Feng J., Podesva P., Zhu H., Pekarek J., Mayorga-Martinez C.C., Chang H., Pumera M., Neuzil P. (2020). Droplet-based differential microcalorimeter for real-time energy balance monitoring. Sensors and Actuators B: Chemical, 312, 127967, https://doi.org/10.1016/j.snb.2020.127967.

11. Feng J., Zhu H., Lukeš J., Korabečná M., Fohlerová Z., Mei T., Chang H., Neužil P. (2021). Nanowatt simple microcalorimetry for dynamically monitoring the defense mechanism of Paramecium caudatum. Sensors and Actuators A: Physical, 323, 112643, https://doi.org/10.1016/j.sna.2021.112643.

12. O'Connor C.T., Taguta J., McFadzean B. (2024). A review of the use of microcalorimetry to determine the enthalpies of immersion and adsorption on various minerals and their relationship to flotation performance. Minerals Engineering, 207, 108552, https://doi.org/10.1016/j.mineng.2023.108552.

13. Anatycuk L.І., Ivaschuk O.I., Kobyliaskyi R.R., Postev I.D., Boiaka V.Yu., Huschul I.Ya. (2016). Thermoelectric device for measuring the temperature and density of heat flux “Altec-10008”. J. Thermoelctricity, 1, 76 – 84.

14. Anatychuk L.I., Luste O.J., Kobylianskyi R.R. (2017). Information-energy theory of medical-purpose thermoelectric temperature and heat flux sensors, J. Thermoelectricity, 4, 5 – 20.

15. Anatychuk L.I., Ivaschuk O.I., Kobylianskyi R.R., Postevka I.D., Bodiaka V.Yu., Hushul I.Ya., Chuprovska Yu.Ya. (2018). On the effect of ambient temperature on the readings of thermoelectric medical-purpose sensors. Sensor Electronics and Microsystem Technologies, 15 (1), 17 – 29.

16. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А., Lysko V.V., Pugantseva O.V., Rozver Yu.Yu., Tiumentsev V.A. (2016). Calibration bench for thermoelectric heat flux converters. J. Thermoelectricity, 5, 71 – 79.

17. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А., Kuz R.V., Manyk О.М., Nitsovych O.V., Cherkez R.G. (2016). Technology for manufacturing thermoelectric microtherrmopiles. J. Thermoelectricity, 6, 49 – 54.

18. Wang Chunzhi, Jiao Hongzhe, Anatychuk Lukyan, Pasyechnikova Nataliya, Naumenko Volodymyr, Zadorozhnyy Oleg, Vikhor Lyudmyla, Kobylianskyi Roman, Fedoriv Roman, Kochan Orest (2022). Development of a temperature and heat flux measurement system based on microcontroller and its application in ophthalmology. Measurement Science Review, 22 (2), 73 – 79.

19. Kobylianskyi R.R., Prybyla A.V., Konstantynovych І.А., Boychuk V.V. (2022). Results of experimental research on thermoelectric heat flux medical sensors. J. Thermoelectricity, 3-4, |

68–81.

20. Anatychuk L.I., Kobylianskyi R.R., Prybyla A.V., Konstantynovych I.A., Boychuk V.V. (2022) Computer simulation of the thermoelectric heat flow sensor on the surface of the human body. Journal of Thermoelectricity, (2), 46–60.

21. L.I. Anatychuk, R.R. Kobylianskyi, R.V. Fedoriv, I.A. Konstantynovych (2023) On the prospects of using thermoelectric cooling for the treatment of cardiac arrhythmia. Journal of Thermoelectricity, (2), 5–17.

22. Yuryk O., Anatychuk L., Kobylianskyi R., Yuryk N. (2023). Measurement of heat flux density as a new method of diagnosing neurological diseases. Kharkiv: PC Technology Center, 31 – 68.

23. R.R. Kobylianskyi, V.V. Lysko, A.V. Prybyla, I.A. Konstantynovych, A.K. Kobylianska, N.R. Bukharaeva, V.V. Boychuk (2023) Technological modes of manufacturing thermoelectric sensors for medical purposes. Journal of Thermoelectricity, (4), 49–63.

24. L.I. Anatychuk, R.R Kobylianskyi, V.V. Lysko, A.V. Prybyla, I.A. Konstantinovych, A.K. Kobylyanska, M.V. Havrylyuk, V.V. Boychuk (2023) Method of calibration of thermoelectric sensors for medical purposes. Journal of Thermoelectricity, (3), 37–49.

How to Cite

Kobylianskyi, R., Lysko, V., & Boychuk, V. (2024). Computer-aided design of thermoelectric microcalorimetric sensors. Journal of Thermoelectricity, (1-2), 97–112. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/161

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.