Design of a multi-stage thermoelectric cooler for a human heart ablation device

Authors

  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0002-4664-3162
  • L.M. Vikhor Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str, Chernivtsi, 58029, Ukraine https://orcid.org/0000-0002-8065-0526
  • R.V. Fedoriv 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • Ya.A. Izvak Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynsky str., 58000, Chernivtsi, Ukraine

Keywords:

cryoablation, multi-stage thermoelectric cooler, thermoelectric cooling

Abstract

The paper presents an analysis of the requirements for a human heart ablation device. Optimal control theory methods were used to design cascade thermoelectric coolers (TEC) and calculate their characteristics. A special iterative algorithm was developed to design and calculate the characteristics of a cascade TEC. The design of the structure and calculation of the parameters of a multi-stage thermoelectric cooler for a human heart ablation device were performed.

References

1. Calkins, H., Hindricks, G., Cappato, R., et al. (2017). 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm, 14(10), e275–e444.

2. Natale, A., Reddy, V. Y., Monir, G., et al. (2014). Paroxysmal AF catheter ablation with a contact force sensing catheter: Results of the prospective, multicenter SMART-AF trial. Journal of the American College of Cardiology, 64(7), 647–656.

3. Dubuc, M., & Guerra, P. G. (2018). Cryoablation for the treatment of cardiac arrhythmias: Current status and future perspectives. Canadian Journal of Cardiology, 34(10), 1288–1295.

4. Anatychuk, L. I., Kobylianskyi, R. R., Fedoriv, R. V., & Konstantinovych, I. A. (2023). On the prospects of using thermoelectric cooling for the treatment of cardiac arrhythmia. Journal of Thermoelectricity, 2023(2), 5–17.

5. Rowe, D. M. (2006). Thermoelectric handbook: Macro to nano. CRC Press.

6. Goldsmid, H. J. (2016). Introduction to thermoelectricity. Springer.

7. Packer, D. L., Kowal, R. C., Wheelan, K. R., et al. (2013). Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: First results of the North American Arctic Front (STOP AF) pivotal trial. Journal of the American College of Cardiology, 61(14), 1713–1723.

8. Khairy, P., & Dubuc, M. (2008). Transcatheter cryoablation: Biophysical principles and clinical applications. Pacing and Clinical Electrophysiology, 31(5), 641–652.

9. Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321(5895), 1457–1461.

10. Anatychuk, L. I., & Vikhor, L. N. (2012). Thermoelectricity. Vol. IV. Functionally graded thermoelectric materials. Institute of Thermoelectricity.

11. Anatychuk, L. I., Vikhor, L. M., Kotsur, M. P., Kobylianskyi, R. R., & Kadenyuk, T. Y. (2016). Optimal control of time dependence of cooling temperature in thermoelectric devices. Journal of Thermoelectricity, 2016(5), 5–11.

12. Anatychuk, L. I., Vikhor, L. N., Kotsur, M. P., Kobylianskyi, R. R., & Kadeniuk, T. Y. (2018). Optimal control of time dependence of temperature in thermoelectric devices for medical purposes. International Journal of Thermophysics, 39(108). https://doi.org/10.1007/s10765-018-2430-z

13. Anatychuk, L. I., Cherkez, R. G. (2012). Energy potential of permeable segmented thermoelements in cooling mode. Journal of Electronic Materials, 41(6), 1115–1119.

14. Anatychuk, L. I., Cherkez, R. G., Demyanyuk, D. D., & Bukharayeva, N. R. (2012). Research on the energy characteristics of permeable planar thermoelement. Journal of Thermoelectricity, 14(2), 84–88.

15. Kotsur, M. (2015). Optimal control of distributed parameter systems with application to transient thermoelectric cooling. Advances in Electrical and Computer Engineering, 15(2), 117–122. https://doi.org/10.4316/aece.2015.02015

16. Anatychuk, L. I., Kobylianskyi, R. R., & Fedoriv, R. V. (2019). Method for taking into account the phase transition in biological tissue during computer-aided simulation of cryodestruction process. Journal of Thermoelectricity, 2019(1), 42–54.

17. Anatychuk, L. I., Kobylianskyi, R. R., & Fedoriv, R. V. (2019). Computer simulation of human skin cryodestruction process during thermoelectric cooling. Journal of Thermoelectricity, 2019(2), 21–35.

18. Anatychuk, L. I., Kobylianskyi, R. R., & Fedoriv, R. V. (2020). Computer simulation of cyclic temperature effect on the human skin. Journal of Thermoelectricity, 2020(2), 44–61.

19. Anatychuk, L. I., Kobylianskyi, R. R., & Fedoriv, R. V. (2020). Computer simulation of cyclic temperature effect on the oncological neoplasm of the human skin. Journal of Thermoelectricity, 2020(3), 29–45.

20. Anatychuk, L. I. (1998). Thermoelectricity. Vol. 1. Physics of Thermoelectricity. Institute of Thermoelectricity.

21. Anatychuk, L. I. (2003). Thermoelectricity. Vol. 2. Thermoelectric power converters. Institute of Thermoelectricity.

22. Anatychuk, L. I., & Lysko, V. V. (2020). Thermoelectricity: Vol. 5. Metrology of Thermoelectric Materials. Institute of Thermoelectricity.

23. Anatychuk, L. I., & Lysko, V. V. (2012). Modified Harman's method. AIP Conference Proceedings, 1449(1), 373–376. https://doi.org/10.1063/1.4731574.

24. Anatychuk, L., & Lysko, V. (2021). Determination of the temperature dependences of thermoelectric parameters of materials used in generator thermoelectric modules with a rise in temperature difference. Journal of Thermoelectricity, 2021(2), 71–78.

25. Anatychuk, L., & Lysko, V. (2021). Method for determining the thermoelectric parameters of materials forming part of thermoelectric cooling modules. Journal of Thermoelectricity, 2021(3), 71–82.

26. Vikhor, L., & Kotsur, M. (2003). Evaluation of efficiency for miniscale thermoelectric converter under the influence of electrical and thermal resistance of contacts. Energies, 16(4082).

27. Prybyla, A. V., & Cherkez, R. G. (2012). Effect of heat-exchange systems on the efficiency of thermoelectric devices. AIP Conference Proceedings, 1449, 443–446.

28. Anatychuk, L. I., & Prybyla, A. V. (2017). Limiting possibilities of thermoelectric liquid-liquid heat pumps. Journal of Thermoelectricity, 2017(4), 51–56.

29. Anatychuk, L. I., & Prybyla, A. V. (2017). On the coefficient of performance of thermoelectric liquid-liquid heat pumps with regard to energy loss for heat carrier transfer. Journal of Thermoelectricity, 2017(6), 32–38.

30. Anatychuk, L. I., Prybyla, A. V., & Rozver, Y. Y. (2017). Experimental study of thermoelectric liquid-liquid heat pump. Journal of Thermoelectricity, 2017(3), 45–51.

31. Anatychuk, L. I., & Prybyla, A. V. (2017). The influence of quality of heat exchangers on the properties of thermoelectric liquid-liquid heat pumps. Journal of Thermoelectricity, 2017(5), 58–63.

32. Anatychuk, L. I., & Prybyla, A. V. (2012). The effect of heat-exchange systems on the efficiency of thermoelectric devices. Journal of Thermoelectricity, 14(3), 39–43.

33. Anatychuk, L. I., & Prybyla, A. V. (2018). Optimization of heat exchange system of thermoelectric liquid-liquid heat pump. Journal of Thermoelectricity, 2018(1), 33–39.

How to Cite

Kobylianskyi, R., Vikhor, L., Fedoriv, R., & Izvak, Y. (2024). Design of a multi-stage thermoelectric cooler for a human heart ablation device. Journal of Thermoelectricity, (4). Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/170

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.