Setup for measuring the electrical contact resistance of “metal – thermoelectric material” structure
Keywords:
electrical contact resistance, probe method, measurement, Peltier effect, thermoelectric energy convertersAbstract
The paper presents a method for determining the electrical contact resistance of "metal - thermoelectric material" structure based on a probe method with thermostating of one side of the contact structure under study. The design of the experimental setup for implementing such a measurement method is described. An example of the results of studies on the contact resistance of "nickel - Bi-Te based extruded thermoelectric material" structure is presented. Bibl. 10, Figs. 8, Table 1.
References
1. T. Tritt. Recent Trends in Thermoelectric Materials Research, Part Two (Semiconductors and Semimetals, Volume 70). Academic Press, 2000. 320 p. ISBN-13: 978-0127521794.
2. D.M. Rowe. Thermoelectrics Handbook: Macro to Nano (1st ed.). CRC Press, 2006. https://doi.org/10.1201/9781420038903.
3. Rowe, D.M. (Ed.). (2012). Modules, Systems, and Applications in Thermoelectrics (1st ed.). CRC Press. https://doi.org/10.1201/b11892.
4. d’Angelo M, Galassi C, Lecis N. Thermoelectric Materials and Applications: A Review. Energies. 2023; 16(17):6409. https://doi.org/10.3390/en16176409.
5. Enescu, D. Applications of Thermoelectricity in Buildings: From Energy Harvesting to Energy Management. In: Littlewood, J., Howlett, R.J., Jain, L.C. (eds) Sustainability in Energy and Buildings 2022. SEB 2022. Smart Innovation, Systems and Technologies, vol 336. Springer, Singapore. https://doi.org/10.1007/978-981-19-8769-4_15
6. J. Vondrak, M. Schmidt, A. Proto, M. Penhaker, J. Jargus and L. Peter, "Using Miniature Thermoelectric Generators for Wearable Energy Harvesting," 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 2019, pp. 1-6, doi: 10.23919/SpliTech.2019.8782997.
7. Zhang, W.; Shen, L.; Yang, Y.; Chen, H. Thermal management for a micro semiconductor laser based on thermoelectric cooling. Appl. Therm. Eng. 2015, 90, 664–673.
8. Piotrowski, A.; Piotrowski, J.; Gawron, W.; Pawluczyk, J.; Pedzinska, M. Extension of usable spectral range of Peltier cooled photodetectors. Acta Phys. Pol. A 2009, 116, s52–s55.
9. Vikhor, L.; Kotsur, M. Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts. Energies, 2023, 16, 4082-1 - 22. https://doi.org/10.3390/en16104082.
10. Anatychuk L.I., Lysko V.V., Prybyla A.V. Rational areas of using thermoelectric heat recuperators. Journal of Thermoelectricity, 2022 (3-4), pp. 43 – 67.
11. L.M. Vikhor. Modeling of thermoelectric converter characteristics. Journal of Thermoelectricity, 2024 (3).
12. L.M. Vikhor, L.I. Anatychuk, and P.V. Gorskyi. Electrical resistance of metal contact to Bi2Te3 based thermoelectric legs. Journal of Applied Physics, 2019, V.126, p.164503-1 – 164503-8.
13. Anatychuk L.I., Vikhor L.M., Mitskaniuk N.V. Contact resistance due to potential barrier at thermoelectric material–metal boundary. Journal of Thermoelectricity, 2019, №4, p. 74-88.
14. Kania, T., Schilder, B., Kissel, T. et al. Development of a Miniaturized Energy Converter Without Moving Parts. Flow Turbulence Combust 90, 741–761 (2013). https://doi.org/10.1007/s10494-012-9418-8
15. C. Yuan, D. Hohlfeld, T. Bechtold. Design optimization of a miniaturized thermoelectric generator via parametric model order reduction. Microelectronics Reliability. Volume 119, 2021, 114075, ISSN 0026-2714, https://doi.org/10.1016/j.microrel.2021.114075.
16. Anatychuk L.I., Lysko V.V. Investigation of the effect of radiation on the precision of thermal conductivity measurement by the absolute method. Journal of Thermoelectricity, 2012 (1), pp. 65–73.
17. Anatychuk L.I., Lysko V.V. Modified Harman's method. (2012) AIP Conference Proceedings, 1449, pp. 373 – 376. DOI: 10.1063/1.4731574.
18. Anatychuk L.I., Lysko V.V. Determination of the temperature dependences of thermoelectric parameters of materials used in generator thermoelectric modules with a rise in temperature difference. Journal of Thermoelectricity, 2021 (2), pp. 71 – 78.
19. Anatychuk L.I., Lysko V.V., Havryliuk M.V. Ways for quality improvement in the measurement of thermoelectric material properties by the absolute method. Journal of Thermoelectricity, 2018 (2), pp. 90 – 100.
20. Anatychuk L.I., Lysko V.V., Havryliuk M.V., Tiumentsev V.A. Automation and computerization of measurements of thermoelectric parameters of materials. Journal of Thermoelectricity, 2018 (3), pp. 80 – 88.
21. Vikhor L.M., Gorskyi P.V., Lysko V.V. Methods for measuring contact resistances of “metal – thermoelectric material” structures (part 1). Journal of Thermoelectricity, 2022 (2), pp. 5-24.
22. Vikhor L.M., Gorskyi P.V., Lysko V.V. Methods for measuring contact resistances of “metal – thermoelectric material” structures (part 2). Journal of Thermoelectricity, 2022 (3-4), pp. 5-17.
23. Anatychuk L.I., Lysko V.V., Strusovskyi K.I. Computer research on the accuracy of probe method for measuring “metal-thermoelectric material” electrical contact resistance. Journal of Thermoelectricity. 2023. No. 4. P. 46-57.
24. COMSOL Multiphysics, v. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden. 2021.
25. J. N. Reddy (2005). An Introduction to the Finite Element Method. 3rd Edition (McGraw-Hill Mechanical Engineering). 784 p.
26. Zaparov S.F. Thermomoelectric material processing tools and their comparative analysis. Journal of Thermoelectricity, 2014 (5), pp. 76-85.
27. Anatychuk L.I., Lysko V.V., Zaparov S.F., Krechun M.M. Methods and equipment for the preparation of thermoelectric material samples for measuring their properties by the absolute method. Journal of Thermoelectricity, 2022 (3-4), pp. 31–42.