Experimental studies on the parameters of thermoelectric generator energy converters with different height of legs
Keywords:
thermoelectric module, electric energy generation, measurement, efficiency, electric power, miniaturizationAbstract
The paper describes the equipment for studying the parameters of thermoelectric generator modules Altec-10002, developed at the Institute of Thermoelectricity (Ukraine). The results of experimental studies on generator modules with a reduced height of the thermoelement legs that make up the module are presented. It is shown that the height of the legs can be reduced 1.5 – 2 times without a significant decrease in the module efficiency. In this case, the reduction of the height of the legs is hindered, first of all, by the increasing influence of the thermal resistance of the heat spreaders between the module and the surfaces of the heat source and heat sink. Bibl. 24, Fig. 7.
References
1. Basic Research Needs for Solar Energy Utilization, Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, USA: DOE, April 18−21, 2005.
2. European Commission. Energy. Energy 2020: Roadmap 2050. –http://ec.europa.eu/energy/energy2020/roadmap/index_en.htm.
3. Waste Heat Recovery:Technology and Opportunities in U.S. Industry, Report of BCS, Incorporated, USA. – 2008.
4. Cynthia Haddad et al. Some efficient solutions to recover low and medium waste heat: competitiveness of the thermoacoustic technology // Energy Procedia. – 2014. – №50. – р. 1056 – 1069.
5. Enescu, D. Applications of Thermoelectricity in Buildings: From Energy Harvesting to Energy Management. In: Littlewood, J., Howlett, R.J., Jain, L.C. (eds) Sustainability in Energy and Buildings 2022. SEB 2022. Smart Innovation, Systems and Technologies, vol 336. Springer, Singapore. https://doi.org/10.1007/978-981-19-8769-4_15
6. Anatychuk, L.I., Kuz, R.V. and Rozver, Y.Y., 2012. Efficiency of thermoelectric recuperators of the exhaust gas energy of internal combustion engines. AIP Conference Proceedings, 1449, pp.516–519.
7. Anatychuk L.I., Lysko V.V., Prybyla A.V. Rational areas of using thermoelectric heat recuperators. Journal of Thermoelectricity, 2022 (3-4), pp. 43 – 67.
8. d’Angelo M, Galassi C, Lecis N. Thermoelectric Materials and Applications: A Review. Energies. 2023; 16(17):6409. https://doi.org/10.3390/en16176409.
9. Rowe, M.D., Gao Min, Williams, S.G.K., Aoune A. ; Matsuura K. ; Kuznetsov V.L. Li Wen Fu. Thermoelectric recovery of waste heat-case studies.– Energy Conversion Engineering Conference, 1997.– vol.2.– p. 1075 – 1079.
10. L.I. Anatychuk, A.V. Prybyla, M.M. Korop, Yu.I. Kiziuk, Konstantynovych I.A. (2024) Thermoelectric power sources using low-grade heat (Part 2). Journal of Thermoelectricity, (3), 36-43.
11. L.I. Anatychuk, A.V. Prybyla, M.M. Korop, Yu.I. Kiziuk, Konstantynovych I.A. (2024) Thermoelectric power sources using low-grade heat (Part 1). Journal of Thermoelectricity, (1-2), 90-96.
12. I.A. Konstantynovych, M.M. Ivanochko, K.O. Kadelnyk (2024) Design of a portable universal thermoelectric generator. Journal of Thermoelectricity, (1-2), 78-89.
13. Lysko, V.V., Konstantynovych, I.A., Kuz, R.V., Derevianko, T.V. (2024). Possibilities of reducing the specific cost of thermoelectric generator energy converters. Journal of Thermoelectricity, (3), 44-52.
14. Cherkez, R.G. (2013). Energy Characteristics of Permeable Thermoelements. Journal of Electronic Materials, 42(7), 1558–1563.
15. Cherkez, R.G. (2012). Energy possibilities of permeable generator thermoelements based on segmented legs. AIP Conference Proceedings, 1449, 439–442.
16. Anatychuk, L.I., Cherkez, R.G. (2003). On the properties of permeable thermoelements. International Conference on Thermoelectrics, ICT, Proceedings, 2003-January, 480–483.
17. TEG-BS-5W-5V-1 https://www.thermonamic.com/pro_view.asp?id=887
18. TEG-BS-10W-5V-2 https://www.thermonamic.com/pro_view.asp?id=876
19. Biolite CampStove https://www.bioliteenergy.com/products/campstove-complete-cook-kit
20. Anatychuk, L., Havrylyuk, M. Procedure and Equipment for Measuring Parameters of Thermoelectric Generator Modules. J. Electron. Mater. 40, 1292–1297 (2011). https://doi.org/10.1007/s11664-011-1619-8.
21. Anatychuk L. I., Havryliuk M. V., Lysko V. V. Absolute Method for Measuring of Thermoelectric Properties of Materials. Materials Today: Proceedings. 2015. Vol. 2, no. 2. P. 737–743. https://doi.org/10.1016/j.matpr.2015.05.110.
22. Anatychuk L.I., Lysko V.V., Havryliuk M.V. Ways for quality improvement in the measurement of thermoelectric material properties by the absolute method. Journal of Thermoelectricity, 2018 (2), pp. 90 – 100.
23. Anatychuk L.I., Lysko V.V. Determination of the temperature dependences of thermoelectric parameters of materials used in generator thermoelectric modules with a rise in temperature difference. Journal of Thermoelectricity, 2021 (2), pp. 71 – 78.
24. Anatychuk L.I., Lysko V.V., Havryliuk M.V., Tiumentsev V.A. Automation and computerization of measurements of thermoelectric parameters of materials. Journal of Thermoelectricity, 2018 (3), pp. 80 – 88.