Thermography and Thermometry in Medicine. The Importance and Use of Non-Invasive Methods in the Diagnostics of Certain Diseases
DOI:
https://doi.org/10.63527/1607-8829-2025-1-26-36Keywords:
temperature, thermography, thermometry, infrared radiation, thermodiagnostics, heat fluxAbstract
Thermography and thermometry are modern diagnostic methods that are currently increasingly used in medical research due to their sufficient information content and non-invasiveness. The paper examines the possibilities of thermography in modern medical diagnostics, analyzes the literature on thermographic and thermometric research methods, and identifies the main areas of application of the method in medicine. The biophysical aspects of thermography, physiological and physical factors that influence the formation of thermographic and thermometric diagnostics have been identified.
References
1. Zlepko S.M., Koval L.H., Havrylova N.M., Tymchyk I.S. (2012). Special-purpose medical equipment. Textbook.
2. Amosova K.M. (2008). Internal medicine. Vol.1 Medytsina: Kyiv.
3. Zhuravlev A.S., Shustakova G.V., Karchinskyy A.A. (2015). The possibilities of using remote infrared thermography to diagnose and determine the effectiveness of the treatment of certain ent organs diseases. Folia Otorhinolaryngol. Pathol. Respirator. 1, 24–26.
4. Zamechnyk T.V., Laryn S.I. (2009). Possibilities of thermography in the diagnosis of varicose veins of the lower extremities. Phlebology 3, 10-14.
5. Anatychuk L.I., Kobylianskyi R.R., Konstantinovich I.A., Lys'ko V.V., Puhantseva O.V., Rozver, Yu. Yu., Tiumentsev V.A. (2016). Calibration bench for thermoelectric converters of heat flux. J. Thermoelectricity, 5, 65–72.
6. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych I.A., Kuz R.V., Manik O.M., Nitsovych O.V., Cherkez R.G. (2016). Technology for manufacturing thermoelectric microthermopiles. J.Thermoelectricity, 6, 49–53.
7. Anatychuk, L.I., Kobylianskyi, R.R., Prybyla, A.V., Konstantynovych, I.A. Boychuk, V.V. (2022) Computer simulation of the thermoelectric heat flow sensor on the surface of the human body. J. Thermoelectricity, 2, 46–60.
8. R.R Kobylianskyi, A.V. Prybyla, I.A. Konstantynovych, V.V. Boychuk (2022) Results of experimental research on thermoelectric medical heat flow sensors. J. Thermoelectricity, 3-4, 68–81.
9. Yuryk, O., Anatychuk, L., Kobylianskyi, R., Yuryk, N. (2023). Measurement of heat flux density as a new method of diagnosing neurological disorders in degenerative-dystrophic diseases of the spine. In: Modern Methods of Diagnosing Diseases, 31–68. (Book Chapter)
10. L.I. Anatychuk, R.R Kobylianskyi, V.V. Lysko, A.V. Prybyla, I.A. Konstantynovych, A.K. Kobylyanska, M. V. Havrylyuk, V.V. Boychuk (2023) Method of calibration of thermoelectric sensors for medical purposes. J. Thermoelectricity, 3, 37–49.
11. R.R. Kobylianskyi, V.V. Lysko, A.V. Prybyla, I.A. Konstantynovych, A.K. Kobylianska, N.R. Bukharayeva, V.V. Boychuk (2023) Technological modes of manufacturing thermoelectric sensors for medical purposes. J.Thermoelectricity, 4, 49–63.
12. Kobylianskyi, R., Przystupa, K., Lysko, V., Umanets, M., Pasyechnikova, N. (2025). Thermoelectric measuring equipment for perioperative monitoring of temperature and heat flux density of the human eye in vitreoretinal surgery. Sensors, 25(4), Article number: 999.
13. Guo S, Wu K, Li C, et al. (2021).Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter. 4(3):969-985.
14. Moreddu R, Elsherif M, Butt H, et al. (2019). Contact lenses for continuous corneal temperature monitoring. RSC Adv 9;9(20):11433-11442.
15. Anatychuk, L.I., Pasyechnikova, N.V., Naumenko, V.A., Kobylianskyi, R.R., Gavrilyuk, N.V.(2019). A thermoelectric device for ophthalmic heat flux density measurements: Results of piloting in healthy individuals. Oftalmologicheskii Zhurnal, 3, 45–51.
16. Anatychuk, L., Kochan, O., Pasechnikova, N., Kobylianskyi, R., Levkiv, M. (2021). Thermoelectric medical device for measuring heat flux from ocular surface. Proceedings of the 13th International Conference on Measurement, 178–181. IEEE, Paper No. 9446775.
17. Wang, C., Jiao, H., Anatychuk, L., Kobylianskyi R, Fedoriv, R., Kochan, O. (2022) Development of a temperature and heat flux measurement system based on microcontroller and its application in ophthalmology. Measurement Science Review, 22(2), 73–79.
18. Kawasaki S, Mizoue S, Yamaguchi M, et al. (2009). Evaluation of filtering bleb function by thermography. Br J Ophthalmol. 93(10):1331-6.
19. Kamao T, Yamaguchi M, Kawasaki S, et al.(2011). Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol. 151(5),782-791.e1.
20 Tan JH, Ng EYK, Acharya UR, Chee C. (2009). Infrared thermography on ocular surface temperature: A review. Infrared Phys Techn. 52:97-108.
21. Chandrasekar B, Rao AP, Murugesan M, Subramanian S, et al. (2021). Ocular surface temperature measurement in diabetic retinopathy. Exp Eye Res 211:108749.
22. Matteoli S, Vannetti F, Sodi A, Corvi A. (2020). Infrared thermographic investigation on the ocular surface temperature of normal subjects. Physiol Meas. 41(4):045003.
24. Haber-Olguin A, Polania-Baron EJ, Trujillo-Trujillo F, Graue Hernandez EO. (2021).Thermographic behaviour of the cornea during treatment with two excimer laser platforms. Transl Vis Sci Technol. 10(9):27.
24. Kawali AA. (2013). Thermography in ocular inflammation. Indian J Radiol Imaging. 23(3):281-3.
25. Shinoda K, Matsumoto SC, Yagura K, et al. (2022). Intraocular temperature distribution in eyes undergoing different types of surgical procedures during vitreous surgery. J Clin Med. 11(7):2053.