Calculation of Charge Carrier Mobility in PbTe Based on Empirical Thermoelectric Parameters

Authors

DOI:

https://doi.org/10.63527/1607-8829-2025-2-39-48

Keywords:

mobility, Seebeck coefficient, specific electrical conductivity, effective mass

Abstract

The paper presents a comparative analysis of the charge carrier mobility in PbTe calculated using expressions derived from the Drude-Sommerfeld model and the model of a nondegenerate semiconductor with parabolic zones. The mobilities were calculated as functions of the experimentally determined Seebeck coefficient and specific electrical conductivity. The results are compared with the corresponding data obtained in the relaxation time approximation.

References

1. Joffe, A. F., & Stil’bans, L. S. (1959). Physical problems of thermoelectricity. Reports on Progress in Physics, 22(1), 167–203. https://doi.org/10.1088/0034-4885/22/1/306

2. Gelbstein, Y., & Davidow, J. (2014). Highly efficient functional GexPb1−xTe based thermoelectric alloys. Physical Chemistry Chemical Physics, 16, 20120–20126. https://doi.org/10.1039/C4CP02399D

3. Khshanovska, O., Parashchuk, T., & Horichok, I. (2023). Estimating the upper limit of the thermoelectric figure of merit in n- and p-type PbTe. Materials Science in Semiconductor Processing, 160, 107428. https://doi.org/10.1016/j.mssp.2023.107428

4. Ni, J. E. (2012). Powder processing and mechanical properties of Ag₀.₈₆Pb₁₉SbTe₂₀ (LAST) and Pb₀.₉₅Sn₀.₀₅Te - PbS 8% (PbTe-PbS) thermoelectric materials (Doctoral dissertation, Michigan State University).

5. Snyder, G. J., Snyder, A. H., Wood, M., Gurunathan, R., Snyder, B. H., & Niu, C. (2020). Weighted mobility. Advanced Materials, 32(20), 2001537. https://doi.org/10.1002/adma.202001537

6. He, W., Qin, B., & Zhao, L.-D. (2020). Predicting the potential performance in p-type SnS crystals via utilizing the weighted mobility and quality factor. Chinese Physics Letters, 37(8), 087104. https://doi.org/10.1088/0256-307X/37/8/087104

7. Qin, B., He, W., & Zhao, L.-D. (2020). Estimation of the potential performance in p-type SnSe crystals through evaluating weighted mobility and effective mass. Journal of Materiomics, 6, 671–676. https://doi.org/10.1016/j.jmat.2020.06.003

8. Askerov, B. M. (1994). Electron transport phenomena in semiconductors. https://doi.org/10.1142/1926

9. Pei, Y., LaLonde, A. D., Wang, H., & Snyder, G. J. (2012). Low effective mass leading to high thermoelectric performance. Energy & Environmental Science, 5, 7963. https://doi.org/10.1039/c2ee21536e

10. Zayachuk, D. M. (1997). The dominant mechanisms of charge-carrier scattering in lead telluride. Semiconductors, 31(2), 173–176. https://doi.org/10.1134/1.1187322

11. Knura, R., Parashchuk, T., Yoshiasa, A., & Wojciechowski, K. T. (2021). Origins of low lattice thermal conductivity of Pb₁−ₓSnₓTe alloys for thermoelectric applications. Dalton Transactions, 50(12), 4323–4334. https://doi.org/10.1039/d0dt04206d

12. Chesnokova, D. B., & Kamchatka, M. I. (2001). Modeling of defect formation in lead chalcogenides and their properties. Inorganic Materials, 37(2), 111–118. https://doi.org/10.1023/A:1004189006526

13. Sealy, B. J., & Crocker, A. J. (1973). The P-T-x phase diagram of PbTe and PbSe. Journal of Materials Science, 8, 1737–1743.

Downloads

How to Cite

Horichok, I., Halushchak, M., Kulyk, O., & Potyatynnyk, T. (2025). Calculation of Charge Carrier Mobility in PbTe Based on Empirical Thermoelectric Parameters. Journal of Thermoelectricity, (2), 39–48. https://doi.org/10.63527/1607-8829-2025-2-39-48

Issue

Section

Materials research

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.