Universal Relation for Thermoelectric Figure of Merit of Two-Phase Composites

Authors

  • A.O. Snarskii 1. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteyskyi Avenue, 37, Kyiv, 03056 Ukraine. 2. Institute for Information Registration Problems of the National Academy of Sciences of Ukraine, 2 N. Shpaka St., Kyiv, 03113, Ukraine. https://orcid.org/0000-0002-4468-4542
  • L.M. Vikhor Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str, Chernivtsi, 58029, Ukraine. https://orcid.org/0000-0002-8065-0526
  • S.O. Podlasov National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteyskyi Avenue, 37, Kyiv, 03056 Ukraine. https://orcid.org/0000-0002-3947-4401

DOI:

https://doi.org/10.63527/1607-8829-2025-2-17-24

Keywords:

composites, isomorphism theory, effective thermoelectric properties, effective thermoelectric figure of merit

Abstract

In the paper, a universal expression for the effective thermoelectric figure of merit of a composite two-phase material is found based on the isomorphism method. It is shown that to determine the effective thermoelectric figure of merit, a set of values of local kinetic coefficients of the phases, namely electrical conductivity, thermal conductivity, and thermoEMF, and the effective value of the thermoEMF coefficient is quite sufficient to use. To determine the thermoelectric figure of merit, it is not necessary to know the effective coefficients of electrical conductivity and thermal conductivity. Therefore, the effective figure of merit does not depend on the choice of approximation (effective medium approximation (EMA), flow theory, Maxwell approximation, etc.) for calculating the effective values of electrical conductivity and thermal conductivity.

References

1. Torquato, S. (2002). Random heterogeneous materials: Microstructure and macroscopic properties. Springer. https://doi.org/10.1115/1.1483342

2. Choy, T. C. (2016). Effective medium theory: Principles and applications. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198705093.001.0001

3. Snarskii, A., Bezsudnov, I. V., Sevryukov, V. A., Morozovskiy, A., & Malinsky, J. (2016). Transport processes in macroscopically disordered media: From mean field theory to percolation. Springer. https://doi.org/10.1007/978-1-4419-8291-9

4. Rowe, D. M. (Ed.). (2006). Thermoelectrics handbook: Macro to nano. Taylor & Francis.

5. Bruggeman, V. D. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik, 416(7), 636–664. https://doi.org/10.1002/andp.19354160705

6. Bergman, D. J. (1978). The dielectric constant of a composite material—a problem in classical physics. Physics Reports, 43(9), 407–411. https://doi.org/10.1016/0370-1573(78)90024-1

7. Snarskii, A., Zorinets, D., Shamonin, M., & Kalita, V. (2019). Theoretical method for calculation of effective properties of composite materials with reconfigurable microstructure: Electric and magnetic phenomena. Physica A: Statistical Mechanics and its Applications, 535, 122467. https://doi.org/10.1016/j.physa.2019.122467

Downloads

How to Cite

Snarskii, A., Vikhor, L., & Podlasov, S. (2025). Universal Relation for Thermoelectric Figure of Merit of Two-Phase Composites. Journal of Thermoelectricity, (2), 17–24. https://doi.org/10.63527/1607-8829-2025-2-17-24

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.