Microcalorimetry in Historical Aspect, Status and Prospects
Part II
DOI:
https://doi.org/10.63527/1607-8829-2025-3-57-70Abstract
Part II of the article highlights the main applied areas of practical use of microcalorimeters of various types, including microcalorimeters with thermoelectric sensors. The role of microcalorimetric methods in materials science, pharmacy, biology and medicine, in the study of food products, for environmental monitoring, in astronomy and elementary particle physics is considered. The future of calorimetry is discussed, namely: areas of application and potential achievements that can be expected when integrating with artificial intelligence, in establishing a connection with other analytical methods that deepen the understanding of thermal phenomena, in the development and use of simulation models, and in improving miniaturization
References
1. C.T. O'Connor, J. Taguta, B. McFadzean (2024). A review of the use of microcalorimetry to determine the enthalpies of immersion and adsorption on various minerals and their relationship to flotation performance. Minerals Engineering, 207, 108552, https://doi.org/10.1016/j.mineng.2023.108552
2. Heshu Hu, Jiazhong Wu, Minghui Zhang. (2024). Microcalorimetry Techniques for Studying Interactions at Solid–Liquid Interface: A Review. Surfaces, 7(2), 265-282; https://doi.org/10.3390/surfaces7020018
3. T.Atake. (2009). Application of calorimetry and thermodynamics to critical problems in materials science. The Journal of Chemical Thermodynamics, 41(1), 1-10. https://doi.org/10.1016/j.jct.2008.08.008
4. Hu H., Wu J., & Zhang M. (2024). Microcalorimetry techniques for studying interactions at solid–liquid interface: a review. Surfaces, 7(2), 265-282. https://doi.org/10.3390/surfaces7020018.
5. Mu, Sen & Chen, Yimin & Pan, Hongbo & Wang, Junqiang & Wang, R.P. & Shen, Xiang & Dai, Shaocong & Xu, Tiefeng & Nie, Qiuhua. (2017). Understanding the Fast Crystallization Kinetics of In-Sb-Te by Ultrafast Calorimetry. CrystEngComm. 2, DOI:10.1039/C7CE01787A
6. Bustamante M., Lilova K., Navrotsky A. et al. (2024). Enthalpies of mixing for alloys liquid below room temperature determined by oxidative solution calorimetry. J Therm Anal Calorim 149, 4817–4826. https://doi.org/10.1007/s10973-024-13035-5
7. Rui Zhang, Mengxue Du, Mengxue Du, Katalee Jariyavidyanont, René Androsch, Evgeny Zhuravlev. (2025). Fast Scanning Calorimetry of Semicrystalline Polymers: From Fundamental Research to Industrial Applications. Acc. Mater. Res. 6, 5, 627–637. https://pubs.acs.org/doi/10.1021/accountsmr.5c00031
8. H. Zhu, L. Wang, J. Feng et al. (2023). The development of ultrasensitive microcalorimeters for bioanalysis and energy balance monitoring, Fundamental Research, https://doi.org/10.1016/j.fmre.2023.01.011
9. Ye Wang, Hanliang Zhu, Jianguo Feng, Pavel Neuzil. (2021) Recent advances of microcalorimetry for studying cellular metabolic heat. TrAC Trends in Analytical Chemistry, Volume 143, 116353, https://doi.org/10.1016/j.trac.2021.116353
10. J. Feng, P. Podesva, H. Zhu, J. Pekarek, C.C. Mayorga-Martinez, H. Chang, M. Pumera, P. Neuzil (2020). Droplet-based differential microcalorimeter for real-time energy balance monitoring. Sensors and Actuators B: Chemical, Volume 312, 127967, https://doi.org/10.1016/j.snb.2020.127967
11. J. Feng, H. Zhu, J. Lukeš, M. Korabečná, Z. Fohlerová, T. Mei, H. Chang, P. Neužil (2021). Nanowatt simple microcalorimetry for dynamically monitoring the defense mechanism of Paramecium caudatum. Sensors and Actuators A: Physical, Volume 323, 112643, https://doi.org/10.1016/j.sna.2021.112643.
12. Martina Freisa, Thi Hong Nhung Dinh, David Bouville, Laurent Couraud, Isabelle Le Potier, et al. (2023). MICROCALORIMETER FABRICATION AND NEW MEASUREMENT METHODOLOGY FOR THERMAL SENSING IN MICROFLUIDICS. Micro and Nano Engineering, 20, 00222. 10.1016/j.mne.2023.100222. hal-04212441 https://hal.science/hal-04212441/document
13. Trumpa M., Wendt B. 5.2 Microcalorimetric Measurements of Heat Production in Human Erythrocytes with a Batch Calorimeter. doi.org/10.1515/9783110860719-021
14. Böttcher H., Fürst P. (1997). Direct microcalorimetry as a technique in cell cultures. Baillieres Clin Endocrinol Metab. Dec;11(4):739-52. DOI: 10.1016/s0950-351x(97)81006-3 ; Monti M., Ikomi-Kumm, J, Valdemarsson, S.
15. Microcalorimetric studies of human blood cells in thyroid disease (1990). Thermochimica Acta, 72, 1 December 1990, 157-162 DOI: 10.1016/s0950-351x(97)81006-3
16. Lőrinczy D.; Szabó D.; Benkő L. (2025). Preliminary Study by Differential Scanning Calorimetric Analysis of Red Blood Cells in Peripheral Artery Disease Patients Treated with Cilostazol: Correlation with Improvements in Walking Distance. Pharmaceuticals 18, 60. https://doi.org/10.3390/ph18010060
17. V.I. Fediv, O.Yu. Mykytiuk, O.I. Olar, V. V. Kulchynskyj, T.V. Biryukova, O.P. Mykytiuk (2020). The role of microcalorimetric research in medicine and pharmacy, Journal of Thermoelectricity 1, 5-24. http://jte.ite.cv.ua/index.php/jt/article/view/64
18. Gönül Kaletunç (2009). Calorimetry in Food Processing: Analysis and Design of Food Systems. Publisher: Wiley-Blackwell, 412 р.
19. Braissant Olivier & Bachmann Alexander & Bonkat Gernot. (2014). Microcalorimetric assays for measuring cell growth and metabolic activity: Methodology and applications. Methods. 76. 10.1016/j.ymeth.2014.10.009
20. Cuenca Martha & Romen, Benjamin & Gatti, Giacomo & Marco, Mason & Scampicchio, Matteo. 2017/05/30 (2017). Microcalorimetry as a Tool for Monitoring Food Fermentations. Chemical Engineering Transactions. 57. 10.3303/CET1757327.
21. Frank E. Runge and Robert Heger (2000). Use of Microcalorimetry in Monitoring Stability Studies. Example: Vitamin A Esters. Journal of Agricultural and Food Chemistry 48 (1), 47-55. DOI: 10.1021/jf981163y
22. Werner Bonrath, Bo Gao, Peter Houston, Tom McClymont, Marc-André Müller, Christian Schäfer, Christiane Schweiggert, Jan Schütz, Jonathan A. Medlock. (2023).75 Years of Vitamin A Production: A Historical and Scientific Overview of the Development of New Methodologies in Chemistry, Formulation, and Biotechnology. Organic Process Research & Development 27 (9), 1557-1584. https://doi.org/10.1021/acs.oprd.3c00161.
23. Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Balderrama CIP, Martínez IC, Saavedra-Leos MZ. (2019). Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers (Basel). Dec 18;12(1):5. doi: 10.3390/polym12010005.
24. Saadi Sami & AriffinAbdul & Mohd Ghazali, Hasanah & Saari, Nazamid & Mohammed, Abdulkarim & Anwar, Farooq & Abdul Hamid, Azizah & Nacer, Nor. (2023). Structure–energy relationship of food materials using differential scanning calorimetry. Journal of Food Process Engineering. 46. DOI:10.1111/jfpe.14336.
25. https://www.azom.com/article.aspx?ArticleID=20650
26. Spackman Tiffany Rose (2023). Use of Microcalorimetry to Evaluate Hardening Reactions in Protein Bars During Accelerated Storage. Theses and Dissertations. 10212. https://scholarsarchive.byu.edu/etd/10212
27. Cabadaj М. (2025). Isothermal microcalorimetry as a novel microbiological tool for industrial production process control: A case study of a commercial probiotic. Isothermal microcalorimetry as a novel microbiological. Thesis submitted to University College London for the degree of Doctor of Philosophy, Department of Pharmaceutics UCL School of Pharmacy 29-39 Brunswick Square London WC1N 1AX. https://discovery.ucl.ac.uk/id/eprint/10205837/
28. Russel Mohammad & Yao Jun & Chen Huilun & Wang Fei & Yong Zhou & Choi, Martin & Trebse, Polonca. (2009). Different Technique of Microcalorimetry and Their Applications to Environmental Sciences: A Review. Marsland Press Journal of American Science. 5. 194-208. https://www.researchgate.net/publication/228958478_Different_Technique_of_Microcalorimetry_and_Their_Applications_to_Environmental_Sciences_A_Review
29. Charles T. Campbell (2019). Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory. Accounts of Chemical Research 52 (4), 984-993. DOI: 10.1021/acs.accounts.8b00579
30. Martina Klučáková,, Jitka Krouská (2025). Microcalorimetry as an Effective Tool for the Determination of Thermodynamic Characteristics of Fulvic–Drug Interactions. Processes, 13(1), 49; https://doi.org/10.3390/pr13010049
31. Yang S, Di Lodovico E, Rupp A, Harms H, Fricke C, Miltner A, Kästner M and Maskow T (2024) Enhancing insights: exploring the information content of calorespirometric ratio in dynamic soil microbial growth processes through calorimetry. Front. Microbiol. 15:1321059. doi: 10.3389/fmicb.2024.1321059.
32. Barella R., Bavay M., Carletti F., Ciapponi N., Premier V., and Marin C. (2024). Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow, The Cryosphere, 18, 5323–5345, https://doi.org/10.5194/tc-18-5323-2024.
33. Stephen J. Smith, Joseph S. Adams, Simon R. Bandler, Rachel B. Borrelli, James A. Chervenak, Renata S. Cumbee, Enectali Figueroa-Feliciano, Fred M. Finkbeiner, Joshua Furhman, Samuel V. Hull, Richard L. L. Kelley, Caroline A. Kilbourne, Noah A. Kurinsky, Jennette N. Mateo, Asha Rani, Kazuhiro Sakai, Nicholas A. Wakeham, Edward J. Wassell, Sang H. Yoon (2023). Development of the microcalorimeter and anticoincidence detector for the Line Emission Mapper x-ray probe. J. Astron. Telesc. Instrum. Syst. 9(4) 041005 https://doi.org/10.1117/1.JATIS.9.4.041005
34. V. Biffi, J.A. ZuHone, T. Mroczkowski, E. Bulbul, W. Forman (2022). The velocity structure of the intracluster medium during a major merger: Simulated microcalorimeter observations A&A 663 A76 Published online: 2022-07-14 DOI: https://doi.org/10.1051/0004-6361/202142764
35. Yue Zhao, Hubing Wang, Bo Gao, Zhen Wang (2023). Characterizations of the electrothermal parameters of a transition edge sensor microcalorimeter and its energy resolution. Superconductivity, 7, 100051, https://doi.org/10.1016/j.supcon.2023.100051
36. F. Mantegazzini, N. Kovac, C. Enss, A. Fleischmann, M. Griedel, L. Gastaldo (2023). Development and characterisation of high-resolution microcalorimeter detectors for the ECHo-100k experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1055, 168564, https://doi.org/10.1016/j.nima.2023.168564
37. M. Borghesi, B. Alpert, M. Balata, D. Becker, D. Bennet, E. Celasco, N. Cerboni, M. De Gerone, R. Dressler, M. Faverzani, M. Fedkevych, E. Ferri, J. Fowler, G. Gallucci, J. Gard, F. Gatti, A. Giachero, G. Hilton, U. Koster, D. Labranca, M. Lusignoli, J. Mates, E. Maugeri, S. Nisi, A. Nucciotti, L. Origo, G. Pessina, S. Ragazzi, C. Reintsema, D. Schmidt, D. Schumann, D. Swetz, J. Ullom, L. Vale (2023). An updated overview of the HOLMES status, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1051, 168205, https://doi.org/10.1016/j.nima.2023.168205
38. 20th International Conference on Calorimetry in Particle Physics. https://indico.cern.ch/event/1339557/sessions/517259/#20240522
39. D. Choiński, A. Wodołażski, P. Skupin, A. Malcher, K. Bernacki (2021). Modeling and CFD simulation of an isothermal heat flow microcalorimeter. Sensors and Actuators A: Physical, 331, 112999, https://doi.org/10.1016/j.sna.2021.112999
40. Meschel, S.V.A brief history of heat measurements by calorimetry with emphasis on the thermochemistry of metallic and metal-nonmetal compounds. (2020) Calphad:Computer Coupling of Phase Diagrams and Thermochemistry, 68, art. no. 101714. DOI:10.1016/j.calphad.2019.101714