Complex of Thermoelectric Equipment for Diagnostics and Treatment of Ophthalmological Diseases
DOI:
https://doi.org/10.63527/1607-8829-2025-3-101-116Keywords:
thermoelectric cooling, irrigation fluid, surgery, ophthalmologyAbstract
The article presents the prospects for the use of new models of thermoelectric equipment developed to solve some urgent problems of ophthalmology, in particular the justification and implementation of the technology of controlled local artificial hypothermia of the eye in vitreoretinal surgery. Thermoelectric devices for measuring intraocular temperature, epibulbar temperature, and heat flux on the surface of the eye were demonstrated, which allow for comprehensive perioperative monitoring of thermal processes in the eye during vitreoretinal surgery. The design of new thermoelectric devices is also described, which provide active cooling/heating of irrigation fluid or eye structures, and which create opportunities for controlling thermal intraocular processes both intraoperatively and in the pre- and postoperative periods.
References
1. Urban J.J., Menon A.K., Tian Z., Jain A., Hippalgaonkar K. (2019) New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more. J. Appl. Phys., 125 (18), 180902. https://doi.org/10.1063/1.5092525.
2. Yang T., Yang Y., Wang X., Zhang G., Cheng Z. (2023) Topological thermoelectrics: New opportunities and challenges. Materials Today Chemistry, 30, 101488. https://doi.org/10.1016/j.mtchem.2023.101488.
3. Baskaran P., Rajasekar M. (2024). Recent trends and future perspectives of thermoelectric materials and their applications. RSC advances, 14(30), 21706–21744. https://doi.org/10.1039/d4ra03625e.
4. Jia S., Ma H., Gao S., Yang L., Sun Q. (2024) Thermoelectric Materials and Devices for Advanced Biomedical Applications. Small, 20(51), e2405019. doi: 10.1002/smll.202405019.
5. Hu B., Shi X.L., Zou J., Chen Z.G. (2022) Thermoelectrics for medical applications: progress, challenges, and perspectives. Chem. Eng. J., 437, 135268. https://doi.org/10.1016/j.cej.2022.135268.
6. Anatychuk L.I., Ivaschuk O.I., Kobylianskyi R.R., Postevka I.D., Bodiaka V.Yu., Gushul I.Ya. (2016) Thermoelectric device for temperature and heat flux density measurement "ALTEC-10008. J. Thermoelectricity, 1, 76-84.
7. Kobylianskyi R., Vikhor L., Fedoriv R., Izvak Y. (2024) Design of a multi-stage thermoelectric cooler for a human heart ablation device. J. Thermoelectricity, (4), 5–13. https://doi.org/10.63527/1607-8829-2024-4-5-13.
8. Anatychuk L., Pasyechnikova N., Naumenko V., Kobylianskyi R., Nazaretyan R., Zadorozhnyy O. (2021) Prospects of Temperature Management in Vitreoretinal Surgery. Ther Hypothermia Temp Manag., 11(2), 117-121. doi:10.1089/ther.2020.0019.
9. Anatychuk L.I., Prybyla A.V. (2020) Thermoelectric Coolers for X-ray Detectors. Nauka innov., 16(4), 47-52. https://doi.org/10.15407/scin16.04.047.
10. Ariza-Gracia M.A., Sanjairaj V., Büchler P. (2025) Editorial: Seeing is believing: cutting-edge technologies transforming ophthalmology. Frontiers in medicine, 12, 1569161. https://doi.org/10.3389/fmed.2025.1569161.
11. Iguchi Y., Asami T., Ueno S., Ushida H., Maruko R., Oiwa K., Terasaki H. (2014) Changes in vitreous temperature during intravitreal surgery. Invest. Ophthalmol. Vis. Sci., 55, 2344-9. https://doi.org/10.1167/iovs.13-13065.
12. Anatychuk L., Zadorozhnyy O., Naumenko V., Maltsev E., Kobylianskyi R., Nazaretyan R., Umanets M., Kustryn T., Nasinnyk I., Korol A., Pasyechnikova N. (2023) Vitreoretinal Surgery with Temperature Management: A Preliminary Study in Rabbits, Ther. Hypothermia Temp. Manag., 13(3), 126-133. http://doi.org/10.1089/ther.2022.0044.
13. Romano V., Angi M., Scotti F., del Grosso R., Romano D., Semeraro F., Vinciguerra P., Costagliola C., Romano M.R. (2013) Inflammation and macular oedema after pars plana vitrectomy. Mediat. Inflamm., 2013, 971758.
14. Fujishima H., Tod, I., Yag, Y., Tsubota K. (1994) Quantitative evaluation of postsurgical inflammation by infrared radiation thermometer and laser flare-cell meter. J. Cataract. Refract. Surg., 20, 451–454.
15. Anatychuk L., Kobylianskyi R., Zadorozhnyy O., Kustryn T., Nasinnyk I., Korol A., Pasyechnikova N. (2024) Ocular surface heat flux density as a biomarker related to diabetic retinopathy (pilot study). Adv. Ophthalmol. Pract. Res., 4, 107–111.
16. Wang C., Jiao H., Anatychuk L., Pasyechnikova N., Naumenko V., Zadorozhnyy O., Vikhor L., Kobylianskyi R., Fedoriv R., Kochan O. (2022) Development of a Temperature and Heat Flux Measurement System Based on Microcontroller and its Application in Ophthalmology. Meas. Sci. Rev., 22, 73–79.
17. Anatychuk L., Kochan O., Pasechnikova N., Naumenko V., Zadorozhnyy O., Vikhor L., Havryliuk M., Kobylianskyi R., Levkiv M. (2021) Thermoelectric medical device for measuring heat flux from ocular surface. In Proceedings of the 2021 13th International Conference on Measurement, Bratislava, Slovakia, 19–21 May 2021; IEEE: New York, NY, USA, 2021; pp. 178–181.
18. Katsimpris J.M., Xirou T., Paraskevopoulos K., Petropoulos I.K., Feretis E. (2003) Effect of local hypothermia on the anterior chamber and vitreous cavity temperature: in vivo study in rabbits. Klin Monbl Augenheilkd., 220(3), 148-51. doi: 10.1055/s-2003-38175.
19. Anatychuk L., Pasyechnikova N., Zadorozhnyy O., Nazaretian R., Myrnenko V., Kobylyanskyi R., Gavrilyuk N. (2015) Original device and approaches to the study of temperature distribution in various eye segments (experimental study). J. Ophthalmol. (Ukraine), 6, 50-53. https://doi. org/10.31288/oftalmolzh201565053.
20. Anatychuk L.I., Pasyechnikova N.V., Naumenko V.А., Zadorozhnyy O.S., Gavrilyuk M.V., Kobylianskyi R.R. (2019) A thermoelectric device for ophthalmic heat flux density measurements: results of piloting in healthy individuals. J. Ophthalmol. (Ukraine), 3, 45-51. http://doi. org/10.31288/oftalmolzh201934551.
21. Kobylianskyi R., Lysko V., Pasyechnikova N., Umanets М., Zadorozhnyy О., Rozver Y., Babich А. (2025). Application of thermoelectric cooling and heating to control the temperature of irrigation fluid in ophthalmic surgery. Phys. Chem. Sol. State, 26(1), 151–157. https://doi.org/10.15330/pcss.26.1.151-157.
22. Anatychuk L, Pasyechnikova N, Naumenko V, Zadorozhnyy O, Danyliuk S, Havryliuk M, Tiumentsev V, Kobylianskyi R. (2020) Thermoelectric device for contact cooling of the human eye. Phys. Chem. Sol. State, 21(1), 140-5. https://doi.org/10.15330/pcss.21.1.140-145.
23. Anatychuk L., Pasyechnikova N., Naumenko V., Zadorozhnyy O., Nazaretian R., Havryliuk M., Tiumentsev V., Kobylianskyi R. (2020) Thermoelectric device for non-contact cooling of the human eyes. J. Thermoelectricity, 4, 76-88. Available from: http://jte.ite.cv.ua/index.php/jt/article/view/49.
24. Kobylianskyi R., Przystupa K., Lysko V., Majewski J., Vikhor L., Boichuk V., Zadorozhnyy O., Kochan O., Umanets M., Pasyechnikova N. (2025) Thermoelectric Measuring Equipment for Perioperative Monitoring of Temperature and Heat Flux Density of the Human Eye in Vitreoretinal Surgery. Sensors, 25(4), 999. https://doi.org/10.3390/s25040999.
25. De Maria M., Coassin M., Mastrofilippo V., Cimino L., Iannetta,D., Fontana L. (2020) Persistence of inflammation after uncomplicated cataract surgery: A 6-month laser flare photometry analysis. Adv. Ther., 37, 3223–3233.
26. Тanito M., Manabe K., Mochiji M., Takai Y., Matsuoka Y. (2019) Comparison of anterior chamber flare among different glaucoma surgeries. Clin. Ophthalmol., 13, 1609–1612.
27. Tetsumoto A., Imai H., Otsuka K., Matsumiya W., Miki A., Nakamura M. (2019) Clinical factors contributing to postoperative aqueous flare intensity after 27-gauge pars plana vitrectomy for the primary rhegmatogenous retinal detachment. Jpn. J. Ophthalmol., 63, 317–321.
28. Galassi F., Giambene B., Corvi A., Falaschi G., Menchini U. (2008) Retrobulbar hemodynamics and corneal surface temperature in glaucoma surgery. Int. Ophthalmol., 28, 399–405.
29. Refinetti R. (2020) Circadian rhythmicity of body temperature and metabolism. Temperature, 7(4), 321-62. https://doi.org/10.1080/23328940.2020.1743605.
30. Jackson T.C., Kochanek P.M. (2019) A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis. Ther Hypothermia Temp Manag., 9(1), 13-47. doi: 10.1089/ther.2019.0001.
31. Sun Y.J., Zhang Z.Y., Fan B., Li G.Y. (2019) Neuroprotection by Therapeutic Hypothermia. Front Neurosci., 13, 586. doi:10.3389/fnins.2019.00586.
32. Saad H., Aladawy M. (2013) Temperature management in cardiac surgery. Glob. Cardiol. Sci. Pract., 1, 44-62. https://doi.org/10.5339/gcsp.2013.7.
33. Drescher C., Diestel A., Wollersheim S., Berger F., Schmitt K.R. (2011) How does hypothermia protect cardiomyocytes during cardioplegic ischemia? Eur J Cardiothorac Surg., 40(2), 352-359. doi:10.1016/j.ejcts.2010.12.006.
34. Mauro A., Massarotti N., Salahudeen M., Cuomo F., Costagliola C., Ambrosone L., Romano M. R. (2018) Design of a novel heating device for infusion fluids in vitrectomy, Appl. Therm. Eng., 128, 625-636. https://doi.org/10.1016/j.applthermaleng.2017.08. 027.
35. Nazaretian R., Zadorozhnyy O., Umanets M., Naumenko V., Pasyechnikova N. (2020) Effect of irrigation solution temperature on the duration of intraocular bleeding during vitrectomy (experimental study). J. Ophthalmol. (Ukraine), 2, 60-64. https://doi.org/10.31288/oftalmolzh202026064.
36. Rinkoff J., Machemer R., Hida T., Chandler D. (1986) Temperature-dependent light damage to the retina. Am. J. Ophthalmol., 102(4), 452-62. https://doi.org/10.1016/0002-9394(86)90073-5.
37. Tamai K., Toumoto E., Majima A. (1997) Local hypothermia protects the retina from ischaemic injury in vitrectomy. Br. J. Ophthalmol., 81(9), 789-94; https://doi.org/10.1136/bjo.81.9.789.
38. Jabbour N. M., Schepens C. L., Buzney S. M. (1988) Local ocular hypothermia in experimental intraocular surgery. Ophthalmology, 95(12), 1687-90. https://doi.org/10.1016/s0161-6420(88)32956-8.
39. Kobylianskyi R., Zadorozhnyy O., Umanets M., Pasyechnikova N., Rozver Y., Babich A. (2024). Computer simulation of a thermoelectric device for controlling the temperature of irrigation fluid during ophthalmological operations. J. Thermoelectricity, (1-2), 61–71. https://doi.org/10.63527/1607-8829-2024-1-2-61-71.
40. Sullivan G., Spencer M. (2022) Heat and temperature. BJA Educ., 22(9), 350-356. doi:10.1016/j.bjae.2022.06.002.
41. Zadorozhnyy O., Korol A., Pasyechnikova N. (2023) Preconditioning-induced retinal protection appears promising: a review. J. Ophthalmol. (Ukraine), (3), 61-70. ttps://doi.org/10.31288/oftalmolzh202336170.