Thermoelectric Heat Meter for the Diagnosis of Neurotrophic Injuries of the Lower Extremities and the Spine

Authors

  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0002-4664-3162
  • O.S. Yuryk State Institution “Institute of Traumatology and Orthopaedics of the NAMS of Ukraine”, Kyiv, Ukraine https://orcid.org/0000-0003-2245-9333
  • N.R. Bukharayeva Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str, Chernivtsi, 58029, Ukraine https://orcid.org/0009-0007-9310-2186
  • A.K. Kobylianska Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str, Chernivtsi, 58029, Ukraine https://orcid.org/0009-0007-5483-7614
  • V.V. Boychuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0009-0006-7852-3452

DOI:

https://doi.org/10.63527/1607-8829-2025-4-93-104

Keywords:

thermoelectric heat meter, semiconductor sensor, bismuth telluride-based thermoelectric material, heat flux density, temperature, medical diagnostics, neurotrophic injury, injuries of the lower extremities and spine, computer program, wireless interface, React Native, Firebase, machine learning

Abstract

The paper presents the development of a multi-channel portable thermoelectric heat meter with a wireless interface and cross-platform software for the diagnosis of neurotrophic injuries of the lower extremities and human spine. The device provides simultaneous measurement of temperature and heat flux density by four independent channels with the ability to connect via Bluetooth or Wi-Fi interface. Software based on React Native has been developed, running on Windows, macOS, Android and iOS platforms with patient management functions, real-time monitoring, data storage in the Firebase cloud database and the ability to analyze the collected datasets using machine learning methods.

References

1. Kobylianskyi R., Yuryk O., Strafun S. (2024). Use of thermoelectric heat meters in locomotor therapy for the rehabilitation of patients with lumbosacral spine injuries. Journal of Thermoelectricity, 4, 69-88. https://doi.org/10.63527/1607-8829-2024-4-69-88

2. Kobylianskyi R., Lysko V., Boychuk V. (2024). Computer-aided design of thermoelectric microcalorimetric sensors. Journal of Thermoelectricity, 1-2, 97-112. https://doi.org/10.63527/1607-8829-2024-1-2-97-112

3. Yuryk O., Anatychuk L., Kobylianskyi R., Yuryk N. (2023). Measurement of heat flux density as a new method of diagnosing neurological disorders in degenerative-dystrophic diseases of the spine. In: Modern Methods of Diagnosing Diseases, 2023, 31–68. (Book Chapter). ISBN 978-617-7319-65-7. https://doi.org/10.15587/978-617-7319-65-7.CH2

4. Gubenko V., Tkalina A., Yuryk O. (2022). Multidisciplinary rehabilitation of patients with lumbosacral radiculopathy based on the international classification of functioning, disability and health. Phytotherapy Journal. https://doi.org/10.33617/2522-9680-2022-2-33

5. Anatychuk L.I., Yuryk O.E., Strafun S.S., Stashkevych А.Т., Kobylianskyi R.R., Cheviuk A.D., Yuryk N.E., Duda B.S. (2021). Thermometric indicators in patients with chronic lower back pain. Journal of Thermoelectricity, 1, 51–64. https://doi.org/10.63527/1607-8829-2021-1-51-64

6. Kobylianskyi R., Przystupa K., Lysko V., Majewski J., Vikhor L., Boichuk V., Zadorozhnyy O., Kochan O., Umanets M., Pasyechnikova N. (2025). Thermoelectric measuring equipment for perioperative monitoring of temperature and heat flux density of the human eye in vitreoretinal surgery. Sensors, 25(4), Article number: 999. https://doi.org/10.3390/s25040999

7. Anatychuk L.I., Kobylianskyi R.R., Lysko V.V., Havryliuk M.V., Boychuk V.V. (2023). Method of calibration of thermoelectric sensors for medical purposes. Journal of Thermoelectricity, 3, 37–49. https://doi.org/10.63527/1607-8829-2023-3-37-49

8. Kobylianskyi R.R., Lysko V.V., Prybyla A.V., Bukharayeva N.R., Boychuk V.V. (2023). Technological modes of manufacturing medical purpose thermoelectric sensors. Journal of Thermoelectricity, 4, 49–63. https://doi.org/10.63527/1607-8829-2023-4-49-63

9. Moreddu R., Elsherif M., Butt H. (2019). Contact lenses for continuous corneal temperature monitoring. RSC Adv. , 9, 11433-11442. https://doi.org/10.1039/C9RA00601J

10. Grin Yu., Anatychuk L.I., Gille P. (2024). Chemical bonding and transverse Seebeck effect in o-Al13Co4. Book of abstracts of 40th International and 20th European Thermoelectric Conference. – 2024, 18.

11. Wang C., Jiao H., Anatychuk L. (2022). Development of a temperature and heat flux measurement system based on microcontroller and its application in ophthalmology. Measurement Science Review, 22, 73-79. https://doi.org/10.2478/msr-2022-0009

12. Lysko V.V., Razinkov V.V., Havryliuk M.V. (2024). Setup for measuring the electrical contact resistance of "metal–thermoelectric material" structure. Journal of Thermoelectricity, 4, 14-25. https://doi.org/10.63527/1607-8829-2024-4-14-25

13. Gresslehner K.H., Krenn M., Kerepesi P. (2024). Non-destructive inspection of thermoelectric modules by scanning acoustic microscopy. Journal of Thermoelectricity, 4, 26-33. https://doi.org/10.63527/1607-8829-2024-4-26-33

14. Mykytiuk P.D., Mykytiuk O.Yu. (2024). Thermoelectric thermometry and calorimetry of the active soil layer. Journal of Thermoelectricity, 4, 34-39. https://doi.org/10.63527/1607-8829-2024-4-34-39

15. Razinkov V.V., Kuz R.V., Krechun M.M. (2024). Ways to increase the resistance of thermoelectric cooling modules to mechanical impacts. Journal of Thermoelectricity, 4, 40-49. https://doi.org/10.63527/1607-8829-2024-4-40-49

16. Esteva A., Kuprel B., Novoa R.A. (2019). A guide to deep learning in healthcare. Nat Med. , 25 (1), 24-29.

17. Topol E.J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nat Med., 25(1), 44-56.

18. Rajkomar A., Dean J., Kohane I. (2019). Machine learning in medicine. N Engl J Med., 380(14), 1347-1358.

19. LeCun Y., Bengio Y., Hinton G. (2015). Deep learning. Nature, 521, 436-444.

20. Goodfellow I. , Bengio Y., Courville A. (2016). Deep Learning. MIT Press, 800 p.

21. Eisenman S. (2018). Building cross-platform apps with react native. O'Reilly Media, 312 p.

22. Boduch A., Derks R. (2020). React and react native. Packt Publishing, 526 p.

23. Griffith, Friedman J., Hassel J. (2019). React native in action. Manning Publications, 368 p.

24. Moroney L. (2015). Firebase essentials. Packt Publishing, 196 p.

25. Khawas C., Shah P. (2018). Application of firebase in android app development. International Journal of Computer Applications, 179(46), 49-53.

26. Price W.N. , Cohen I.G. (2019). Privacy in the age of medical big data. Nat Med., 25(1), 37-43.

Downloads

How to Cite

Kobylianskyi, R., Yuryk, O., Bukharayeva, N., Kobylianska, A., & Boychuk, V. (2025). Thermoelectric Heat Meter for the Diagnosis of Neurotrophic Injuries of the Lower Extremities and the Spine. Journal of Thermoelectricity, (4), 93–104. https://doi.org/10.63527/1607-8829-2025-4-93-104

Issue

Section

Thermoelectric Device Engineering

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.