Комп’ютерне моделювання циклічного температурного впливу на шкіру людини

Автор(и)

  • Л.І. Анатичук 1. Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2. Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна
  • Р.Р. Кобилянський 1. Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2. Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна
  • Р.В. Федорів 1. Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2. Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна

Ключові слова:

температурний вплив, шкіра людини, динамічний режим, комп’ютерне моделювання

Анотація

У роботі наведено результати комп’ютерного моделювання циклічного температурного впливу на шкіру людини у динамічному режимі. Побудовано тривимірну комп’ютерну модель біологічної тканини з врахуванням теплофізичних процесів, кровообігу, теплообміну, процесів метаболізму та фазового переходу. Як приклад, розглянуто випадок, коли на поверхні шкіри знаходиться робочий інструмент, температура якого змінюється циклічно за наперед заданим законом у діапазоні температур [50 ÷ +50] °C. Визначено розподіли температури у різних шарах шкіри людини в режимах охолодження та нагріву. Отримані результати дають можливість прогнозувати глибину промерзання і прогрівання біологічної тканини при заданому температурному впливі. 

This paper presents the results of computer simulation of cyclic temperature effect on the human skin in a dynamic mode. A three-dimensional computer model of biological tissue was built with regard to thermophysical processes, blood circulation, heat exchange metabolic and phase transition processes. As an example, the case is considered when on the skin surface there is a work tool whose temperature varies in the temperature range [‑50 ÷ +50] °C. Temperature distributions in different layers of the human skin in heating and cooling modes have been determined. The results obtained make it possible to predict the depth of biological tissue freezing and heating with a given temperature effect. Bibl. 46, Fig. 10, Tabl. 2.

 

Посилання

Anatychuk L.I. (1979). Termoelementy i termoelektricheskiie ustroistva: spravochnik [Thermoelements and thermoelectric devices: reference book]. Kyiv: Naukova dumka [in Rusian].

Kolenko E.A. (1967). Termoelektricheskiie okhlazhdaiushchiiie pribory [Thermoelectric cooling devices]. 2nd ed. Leningrad: Nauka [in Russian].

Anatychuk L.I., Denisenko O.I., Kobylianskyi R.R., Kadeniuk T.Ya., Perepichka M.P.(2017). Suchasni metody krioterapii v dermatologichnii praktytsi [Modern cryotherapy methods in detrmatological practice]. Klinichna ta Eksperymentalna Patologiia, XVІ, 1(59), 150-156 [in Ukrainian].

Denkov V. (1988). On the edge of life. Moscow: Znaniie [Russian transl.]

Maruyama S., Nakagawa K., Takeda H. (2008). The flexible cryoprobe using Peltier effect for heat transfer control. Journal of Biomechanical Science and Engineering, 138-150.

Kochenov V.I. (2000). Kriokhirurgicheskaia profilakticheskaia onkologiia [Cryosurgical preventive oncology]. Niznii Novgorod [in Russian].

Kochenov V.I. (2003). Kriologicheskaia profilakticheskaia onkologiia: kratkoie uchebnoie i metodicheskoie posobiie dlia vrachei i studentov [Cryological preventive oncology: a short educational and methodological guide for doctors and students]. Organization Nizhnii Novgorod Regional Oncological Association of Disabled People (Ed). 2nd revised ed. Nizhnii Novgorod [in Russian].

Kochenov V.I. (1982). Adhesive effect in cryosurgery. Abstract in the International Abstract Journal, IV, 8.

Moskalyk I.A., Manyk O.M. (2013). On the use of thermoelectric cooling in cryodestruction practice. J.Thermoelectricity, 6, 84-92.

Anatychuk L.I., Denisenko O.I., Kobylianskyi R.R., Kadenyuk T.Ya. (2015). On the use of thermoelectric cooling in dermatology and cosmetology. J.Thermoelectricity, 3, 57-71.

Moskalyk I.A. (2015). Pro vykorystannia termoelektrychnykh pryladiv u kriokhirurhii [On the use of thermoelectric devices in cryosurgery]. Fizyka i khimiia tverdoho tila - Physics and Chemistry of Solid State, 4, 742-746.

Kobylianskyi R.R., Kadenyuk T.Ya. (2016). Pro perspektyvy vykorystannia termoelektryky dlia likuvannia zakhvoriuvan shkiry kholodom [On the prospects of using thermoelectricity for treatment of skin diseases with cold]. Naukovy visnyk Chernivetskogo universitetu: zbirnyk naukovykh ptrats. Fizyka. Elektronika - Scientific Bulletin of Chernivtsi University: Collection of Scientific Papers. Physics. Electronics, 5, 1, 67 – 72 [in Ukrainian].

Zinkin A.N., Zingilevskaia N.G., Muselian B.B. (1997). Kriovozdeistvie v otorinolaringologii:

metodicheskiie rekomendatsii [Cryotherapy in otorhinolaryngology: guidelines]. Krasnodar [in Russian].

Belous А. М., Bondarenko V.A. (1982). Strukturnyie izmeneniia biologicheskikh membran pri okhlazhdenii [Structural changes of biological membranes in cooling]. Kyiv: Naukova dumka [in Russian].

Belous А. М., Bondarenko V.A., Babiichuk L.K., et al. (1985). Edinyi mekhanizm povrezhdeniia kletki pri termalnom shoke, zamorazhivanii a postgipertonicheskom lizise [Unified mechanism of cell damage during thermal shock, freezing and posthypertensive lysis]. Kriobiologiia – Cryobiology, 2, 25-32 [in Russian].

Miller P., Metzner D. (1969). Cryosurgery for tumors of the head and neck. Trns. Am.Ophthalmol. Otolaringol. Soc., 73(2), 300-309.

D’Hont G. (1974). La cryotherapie en ORL. Acta. Otorhinolaringol. Belg., 28(2), 274-278.

Mazur P. (1968). Physical-chemical factors underlying cell injury in cryosurgical freezing. In: Cryosurgery ed. by R. W. Rand, A. P. Rinfret, H. Leden. Springfield, Illinois, U.S.A.

Shafranov V.V., Borkhunova E.N., Kostyliov M.A., et al. (2012). Mekhanizm razrusheniia biologicheskikh tkanei pri lokalnoi kriodestruktsii [Mechanism of desctruction of biological tissues during local cryodesctruction]. Bulletin of the Russian Academy of Natural Sciences, 1, 68 – 77 [in Russian].

Kandel E.I. (1974). Kriokhirurgiia [Cryosurgery]. Moscow: Meditsina [in Russian].

Gill W., Fraser I. (1968). A look at cryosurgery. Scot. Med, I, 13, 268-273.

Derpgolts V.F. (1979). Mir vody [World of water]. Leningrad [in Russian].

Shafranov V.V., Korotkii N.G. (2000). Vozmozhnosti ispolzovanii metoda CVCh-destruktsii v dermokosmetologii dlia lecheniia keloidnykh rubtsov [Possibilities of using the microwave cryodestruction method in dermocosmetology for the treatment of keloid scars]. Detskaia khirurgiia - Pediatric Surgery, 1, 35–37 [in Russian].

Van Venrjy G. (1975). Freeze-etching: freezing velocity and crystal size at different size locations in samples. Cryobiology, 12(1), 46–61.

Bause H. (2004). Kryotherapie lokalisierter klassischer, Neues Verfahren mit Peltier-Elementen (–32°C) Erfahrungsbericht Hamangiome. Monatsschr Kinderheilkd. 152:16–22.

Ponomarenko G.N. (2002). Fizioterapiia v kosmetologii [Physiotherapy in cosmetology]. St.Petersburg: Voienno-Meditsinskaia Akademia [in Russian].

Zadorozhnyi B.A. (1985). Krioterapiia v dermatologii (Biblioteka practicheskogo vracha). [Cryotherapy in dermatology (Library of practicing physician)]. Kyiv: Zdorovie [in Russian].

Anatychuk L.I., Vikhor L.M., Kotsur M.P., Kobylianskyi R.R., Kadenyuk T.Ya. (2016). Optimal control of time dependence of cooling temperature in thermoelectric devices. J.Thermoelectricity, 5, 5-11.

Anatychuk L.I., Kobylianskyi R.R., Kadenyuk T.Ya. (2017). Computer simulation of local thermal effect on the human skin. J.Thermoelectricity, 1, 69-79.

Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadenyuk T.Ya. (2017). Computer simulation and optimization of the dynamic operating modes of thermoelectric device for treatment of skin diseases. J.Thermoelectricity, 2, 44-57.

Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadenyuk T.Ya., Zvarich O.V. (2017). Com-

puter simulation and optimization of the dynamic operating modes of thermoelectric reflexotherapy device. J.Thermoelectricity, 3, 68-78.

Anatychuk L., Vikhor L., Kotsur M., Kobylianskyi R., Kadenyuk T. (2018). Optimal control of time dependence of temperature in thermoelectric devices for medical purposes. International Journal of Thermophysics 39:108. https://doi.org/10.1007/s10765-018-2430-z.

Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2019). Method for taking into account the phase transition in biological tissue during computer-aided simulation of cryodestruction process. J. Thermoelectricity, 1, 46-58.

Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2019). Computer simulation of human skin cryodestruction process during thermoelectric cooling. J.Thermoelectricity, 2, 21-35.

Jiang S.C., Ma N., Li H.J., Zhang X.X. (2002). Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns, 28, 713-717.

Cetingul M.P., Herman C. (2008). Identification of skin lesions from the transient thermal response using infrared imaging technique. IEEE, 1219-1222.

Ciesielski M., Mochnacki B., Szopa R. (2011). Numerical modeling of biological tissue heating. Admissible thermal dose. Scientific Research of the Institute of Mathematics and Computer Science, 1(10), 11-20.

Filipoiu Florin, Bogdan Andrei Ioan, Carstea Iulia Maria (2010). Computer-aided analysis of the heat transfer in skin tissue. Proceedings of the 3-rd WSEAS Int. Conference on Finite Differences - Finite Elements - Finite Volumes - Boundary Elements, 2010, 53-59.

Carstea Daniela, Carstea Ion, Carstea Iulia Maria (2011). Interdisciplinarity in computer-aided analysis of thermal therapies. WSEAS Transactions on Systems and Control, 6(4), 115-124.

Deng Z.S., Liu J. (2005). Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties. Cryobiology, 50, 183 192.

Lim Han Liang, Gunasekaran Venmathi (2011). Mathematical modeling of heat distribution during cryosurgery. https://isn.ucsd.edu/last/courses/beng221/problems/2011/project10.pdf.

Shah Vishal N., Orlov Oleg I., Orlov Cinthia, Takebe Manabu, Thomas Matthew, and Plestis Konstadinos (2018). Combined cryo-maze procedure and mitral valve repair through a ministernotomy. Multimed Man Cardiothorac Surg. 2018. doi: 10.1510/mmcts.2018.022.

Bokeriia L.A., Bokeriia O.L., Kambarov S,Yu., Mota О. R., Zavarina A.Yu., Rubtsov P.P., Mordvinova A.S. (2009). Kriomodifikatsiia operatsii “labirint” v sochetanii s protezirovaniiem mitralnogo klapana, plastikoi trikuspidalnogo klapana i aortokoronarnym shuntirovaniiem (klinivcheskii sluchai) [Cryomodification of the "labyrinth" operation in combination with mitral valve replacement, tricuspid valve plasty and coronary artery shunting (clinical case)]. Bulletin of A.N.Bakulev Scientific Centre of Crdiovascular Surgery RAMS, 5, 65–71.

Rykaczewski Konrad (2019). Modeling thermal contact resistance at the finger-object interface. Temperature, 6 (1), 85-95.

Pennes H.H. (1948)ю Analysis of tissue and arterial blood temperatures in the resting forearm J. Appl. Physiol. , 1(2), 93 – 122.

COMSOL Multiphysics User’s Guide (2010).

##submission.downloads##

Як цитувати

Анатичук, Л., Кобилянський, Р., & Федорів, Р. (2024). Комп’ютерне моделювання циклічного температурного впливу на шкіру людини. Термоелектрика, (2), 44–61. вилучено із http://jte.ite.cv.ua/index.php/jt/article/view/61

Номер

Розділ

Конструювання

Статті цього автора (авторів), які найбільше читають

1 2 3 4 5 > >> 

Схожі статті

<< < 1 2 3 4 5 > >> 

Ви також можете розпочати розширений пошук схожих статей для цієї статті.