Термоелектричні властивості тонких плівок вісмуту і твердого розчину вісмут-сурма

Автор(и)

  • В.М. Грабов Російський державний педагогічний університет ім. А. І. Герцена, наб. р. Мойки, Санкт-Петербург, 191186, Росія
  • Є.В. Демідов Російський державний педагогічний університет ім. А. І. Герцена, наб. р. Мойки, Санкт-Петербург, 191186, Росія
  • В.А. Комаров Російський державний педагогічний університет ім. А. І. Герцена, наб. р. Мойки, Санкт-Петербург, 191186, Росія
  • А.В. Суслов Російський державний педагогічний університет ім. А. І. Герцена, наб. р. Мойки, Санкт-Петербург, 191186, Росія
  • В.А. Герега Російський державний педагогічний університет ім. А. І. Герцена, наб. р. Мойки, Санкт-Петербург, 191186, Росія
  • Д.Д. Єфімов Російський державний педагогічний університет ім. А. І. Герцена, наб. р. Мойки, Санкт-Петербург, 191186, Росія

Ключові слова:

вісмут, вісмут-сурма, термоЕРС, розмірний ефект, фактор потужності

Анотація

Методом, що виключає виникнення зовнішніх деформаційних впливів на систему плівка-підкладка, були досліджені температурні залежності питомого опору і термоЕРС, розрахований фактор термоелектричної потужності в інтервалі температур 77-300 К для плівок твердого розчину вісмут-сурма на підкладках з різним коефіцієнтом температурного розширення. Встановлено, що для отримання максимальної термоЕРС критично важливим є співвідношення розміру кристалітів і товщини плівки, що обумовлено різним обмеженням рухливостей електронів і дірок поверхнею і межами кристалітів. Максимальне значення термоЕРС і фактора потужності відповідає товстим блоковим плівкам Bi0.88Sb0.12 на слюді. Робота виконана в рамках державного завдання за фінансової підтримки Міносвіти Росії (проект № FSZN-2020-0026).

The temperature dependences of the resistivity and thermoEMF were investigated by the method that excludes the occurrence of external strain in the film-substrate system, and the thermoelectric power factor was calculated in the temperature range of 77 to 300K for bismuth-antimony solid solution films on substrates with different thermal expansion coefficients. It has been found that to get the maximum thermoEMF, the ratio of the crystallite size and film thickness is critically important, which is due to the different confinement of electrons and holes mobility by the surface and crystallite boundaries. The maximum thermoEMF and power factor correspond to thick block films of Bi0.88Sb0.12 on mica.The research was supported by the Ministry of Education of the Russian Federation as part of a state assignment (project No. FSZN-2020-0026). Вibl. 19, Fig. 7, Tabl. 1.

 

Посилання

Hicks L.D., Dresselhaus M.S. (1993). Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 47, 12727.

Dresselhaus M.S., Dresselhaus G., Sun X., Zhang Z., Cronin S. B., Koga T. (1999). Low-dimensional thermoelectric materials. Phys. Solid State, 41, 679.

Nikolaeva A.A., Konopko L.A., Gitsu D.V., Huber T.E., Para G.I., Tsurkan A. (2008). Influence of magnetic field, elastic tension and dimensions on the thermoelectric properties of bismuth nanowires. J.Thermoelectricity, 2, 21-37.

Dmitriev A.V., Zviagin I.P. (2010). Sovremennyie tendentsii razvitiia fiziki termoelektricheskikh materialov [Modern development trends of thermoelectric materials]. Uspekhi Fizicheskikh Nauk- Advances in Physical Sciences, 180(8), 821–838 [in Russian].

Ovsyannikov S.V., Shchennikov V.V., Vorontsov G.V., Manakov A.Y., Likhacheva A.Y., Kulbachinskii V.A. (2008). Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. J.Applied Physics, 104, 053713.

Demidov E.V., Grabov V.M., Komarov V.A., Suslov A.V., Suslov M.V. (2017). The method of measuring the thermoelectric power in the thin films of the semimetals and narrow-gap semiconductors formed on the thin substrates. Journal of Physics: Conference Series, 857, 012006.

Grabov V.M., Demidov E.V., Ivanova Е.К., Komarov V.A., Kablukova N.S., Krushelnitskiy A.N., Staritsyn M.V. (2017). Influence of annealing at a higher than solidus temperature on the structure and galvanomagnetic properties of thin films of Bi92Sb8 solid solution. Technical Physics, 87(7), 1071-1077.

Grabov V.M., Komarov V.A., Demidov E.V., Khristich E.E. (2011). The occurrence of the classic size effect in single crystal bismuth films. Moldavian Journal of the Physical Sciences, 10(1), 87-95.

Grabov V.M., Demidov E.V., Komarov V.A. (2011). Ogranicheniie podvizhnosti nositelei zariada v plionkakh vismuta, obuslovlennoie ikh blochnoi strukturoi [Restriction of charge carrier mobility in bismuth films due to their block structure]. Poverkhnost’, sinkhrotronnyie i neitronnyie issledovaniia – J.Surf.Invest.:X-Ray, Synchrotron Neutron Techn., 2, 81-85 [in Russian].

Kusagaya K., Hagino H., Tanaka S. Miyazaki, K., Takashiri M. (2015).Structural and thermoelectric properties of nanocrystalline bismuth telluride thin films under compressive and tensile strain. J. Electronic Materials, 44(6), 1632.

Bukharaieva A.A., Zvezdin A.K., Piatakov A.P., Fetisov Yu.K. (2018). Streintronika – novoie napravleniie mikro- i nanoelektroniki i nauki o materialakh [Straintronics – a new direction of micro- and nanoelectronics and materials science]. Uspekhi Fizicheskikh Nauk- Advances in Physical Sciences, 188, 1288-1330 [in Russian].

Ovsyannikov S.V., Shchennikov V.V., Vorontsov G.V., Manakov A.Y., Likhacheva A.Y., Kulbachinskii V.A. (2008). Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. J.Applied Physics, 104, 053713.

Nikolaeva A., Huber T., Konopko L., Tsurkan A. Features of Lifshits electron topological transitions induced by anisotropic deformation in thin wires of doped bismuth. // J. Low Temp. Phys. - № 159. - 2010. - P. 258.

Grabov V.M., Demidov E.V., Komarov V.A. (2010). Optimizatsiia rezhimov termicheskogo osazhdeniia v vakuume plionok vismuta pri kontrole ikh defektnosti metodom atomno-silovoi mikroskopii [Optimization of thermal deposition in vacuum of bismuth films while monitoring their defectiveness by atomic force microscopy]. Fizika Tverdogo Tela- Solid State Physics, 52(6), 1219 – 1222 [in Russian].

Grabov V.M., Demidov E.V., Komarov V.A., Kiseleva N.I. (2011). Thermoelectric properties of bismuth films having nanoblock structure. J.Thermoelectricity, 4, 73-79.

Demidov E.V., Grabov V.M., Komarov V.A., Suslov A.V., Suslov M.V. (2017). The method of measuring the thermoelectric power in the thin films of the semimetals and narrow-gap semiconductors formed on the thin substrates. Journal of Physics: Conference Series, 857, 012006.

Demidov E.V., Grabov V.M., Komarov V.A., Krushelnitskiy A.N., Suslov A.V., Suslov M.V. (2019). Osobennosti proiavleniia kvantovo-razmernogo effekta v yavleniiakh perenosa v tonkikh plionkah vismuta na podlozhkakh iz sliudy [Peculiarities of quantum size effect manifestation in transport phenomena in bismuth thin films on mica substrates]. Fizika i Teknika Poluprovodnikov – Semiconductors, 53(6), 736-740 [in Russian].

Grabov V.M., Demidov E.V., Komarov V.A., Klimantov М.М. (2009). Atomno-silovaia mikroskopiia dekorirovannykh oksidirovaniiem defektov plionok vismuta [Atomic-force microscopy of bismuth films decorated with oxidation of defects]. Fizika Tverdogo Tela - Physics of the Solid State, 51(4), 800-802 [in Russian].

Grabov V.M., Demidov E.V., Komarov V.A. (2008). Atomno-silovaia mikroskopiia plionok vismuta [Atomic-force microscopy of bismuth films]. Fizika Tverdogo Tela – Physics of the Solid State, 50(7), 1312-1316 [in Russian].

##submission.downloads##

Як цитувати

Грабов, В., Демідов, Є., Комаров, В., Суслов, А., Герега, В., & Єфімов, Д. (2024). Термоелектричні властивості тонких плівок вісмуту і твердого розчину вісмут-сурма. Термоелектрика, (2), 73–84. вилучено із http://jte.ite.cv.ua/index.php/jt/article/view/63

Номер

Розділ

Термоелектричні вироби

Схожі статті

1 2 3 4 > >> 

Ви також можете розпочати розширений пошук схожих статей для цієї статті.