Експлуатаційні випробування термоелектричного теплового насосу для відцентрової дистиляції стічних вод космічної системи життєзабезпечення
Ключові слова:
тепловий насос, дистиляторАнотація
У статті описано результати випробувань системи багатоступінчастої відцентрової вакуумної дистиляції (CMED) з термоелектричним тепловим насосом (THP). В роботі наведено результати досліджень з вивчення основних характеристик процесу при концентруванні води та урини в разі використання дистиляторів трьох- і п’ятиступінчасної конструкції. Особливу увагу приділено вивченню впливу параметрів процесу на зміну коефіцієнта ефективності термоелектричного теплового насосу.
The paper describes the test results of a multistage centrifugal vacuum distillation (CMED) system with a thermoelectric heat pump (THP). The paper presents the results of research on the study of the main characteristics of the process of concentrating water and urine when using three- and five-stage distillers. Particular attention is paid to studying the influence of process parameters on the change in the efficiency of a thermoelectric heat pump. Bibl. 26, Fig. 4, Tabl. 3.
Посилання
Rifert, V. G., Anatychuk, L. I., Barabash, P. O., Solomakha A. S., Strykun A. P., Sereda, V. V., Prybyla,A. V. (2019). Evolution of centrifugal distillation system with a thermoelectric heat pump for space missions. J. Thermoelectricity, 3, 5 – 19.
Rifert V. G., Anatychuk L. I., Barabash P. O., Usenko V. I., Solomakha A. S., Petrenko V. G.,
Prybyla A. V., Sereda V. V. (2019). Comparative analysis of thermal distillation methods with heat pumps for long space flights. J. Thermoelectricity, 4, 5 – 18.
Rifert, V., Solomakha, A., Barabash, P. et al. (2022). Сentrifugal multiple effect distiller for water recovery for space applications. CEAS Space Journal. https://doi.org/10.1007/s12567-022-00480-x
Roebelen, G., Jr., Dehner, G., Winkler, H. (1984). Thermoelectric integrated membrane evaporation water recovery technology. SAE 93,559–570. https:// doi.org/ 10. 4271/ 820849
Dehner, G. F., Reysa, R. P. (1985). Thermoelectric integration membrane evaporation subsystem water recovery technology update. In: 15 Intersociety Conference on environmental systems. Paper 851348. https:// doi.org/ 10. 4271/ 851348
Dehner, G. F., Price, D. F. (1987). Thermoelectric integration membrane evaporation subsystem testing. SAE Paper 871446. https://doi.org/10.4271/871446
Thibaud-Erkey C., Fort J., Scull T., Edeen M. (2002). Performance testing of a new membrane evaporator for the thermoelectric integrated membrane evaporator system (TIMES) water processor. In:32nd International Conference on Environmental Systems. SAE 2002-01-2525. https:// doi.org/ 10. 4271/ 2002- 01- 2525
Development of a prototype TIMES wastewater recovery subsystem. Roerelen G. J., Denher G. F. PREPARED UNDER CONTRACT NO. NAS 9-15471, 1982 and 1984
Rifert Vladimir G., Barabash Petr A., Usenko Vladimir, Solomakha Andrii S., Anatychuk Lukyan I., Prybyla A.V. Improvement the cascade distillation system for long-term space flights. 68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017. IAC-17-A1.IP.25.
Vapor compression distillation module (Contracts NAS9-13714 & NAS9-14234), Prepared by P. P.Nuccio, 1975
Noble Larry D., Schubert Franz H., Pudoka Rick J., Miernik Janie H. (1990). Phase change water recovery for the space station free domand future exploration missions. 20th lntersociety Conference on Environmental Systems. Williamsburg, Virginia, July 9-12, 1990. SAE Technical Paper 901294.
Wieland P., Hutchens C. and Long D., B. Salyer Final Report on Life Testing of the Vapor Compression Distillation / Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center (1993 to 1997) NASA/TM —1998–208539
Carter L., Williamson J., Brown C.A., Bazley J., Gazda D., Schaezler R., Thomas Frank. (2018). Status of ISS water management and recovery. 48th International Conference on Environmental Systems. 8 - 12 July 2018, Albuquerque, NewMexico. ICES-2018-088.
Carter L., Williamson J., Brown C.A., Bazley J., Gazda D., Schaezler R., Thomas Frank (2017). Status of ISS water management and recovery. 47th International Conference on Environmental Systems, 17 – 20 July 2017, Charleston, South Carolina. ICES-2016-036
Rifert V. G., Anatychuk L. I., Barabash P. O., Solomakha A. S., Usenko V. I., Petrenko V. G. (2021). Justification of thermal distillation method with a thermoelectric heat pump for long-term space missions. J. Thermoelectricity, 1, 5 – 22. http://jt.inst.cv.ua/jt/jt_2021_01_en.pdf
Rifert V. G., Anatychuk L. I., Solomakha A. S., Barabash P. O., Petrenko V. G., Snegovskoy O. P. (2021). Influence of thermodynamic characteristics of a thermoelectric heat pump on the performance and energy consumption of a centrifugal distiller. J. Thermoelectricity, 2, 5 –http://jt.inst.cv.ua/jt/jt_2021_02_en.pdf
Rifert Vladimir G., Anatychuk Lukyan I., Solomakha Andrii S., Barabash Petr A., Usenko Vladimir, Prybyla A.V., Naymark Milena, Petrenko Valerii (20190. Upgrade the centrifugal multiple-effect distiller for deep space missions. 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. IAC-19-A1,IP,11,x54316.
Solomakha A.S., Anatychuk L.I., Rifert V.G., Barabash P.A., Usenko V., Petrenko V. (2020). Thermal distillation system for deep space missions: rationale for the choice. 71st International Astronautical Congress (IAC) – The Cyber Space Edition, 12-14 October 2020. IAC-20- A1,VP,15,x61344. 7 pages. https://www.iafastro.org/assets/files/publications/iac-publications/IAC2020-Virtual-FinalProgramme-2020-10-07-FINAL-online-Lowres.pdf
Rifert V., Barabash P., Goliad N. (1990). Methods and processes of thermal distillation of water solutions for closed water supply systems. The 20th Intersociety Conference on Environmental Systems, Williamsburg, July 1990. SAE Paper 901249.
Rifert V., Usenko V., Zolotukhin I., MacKnight A., Lubman A. (1999). Comparison of secondary water processors using distillation for space applications. SAE Paper 99-70466, 29th International Conferenceon Environmental Systems, Denver, July 1999.
Rifert V., Stricun A., Usenko V. (2000). Study of dynamic and extreme performances of multistage centrifugal distiller with the thermoelectric heat pump. SAE Technical Papers 2000. 30th International Conferenceon Environmental Systems; Toulouse; France; 10-13 July 2000.
Rifert V. G., Usenko V. I., Zolotukhin I. V., MacKnight A. and Lubman A. (2003). Cascaded distillation technology for water processing in space. SAE Paper 2003-01-2625. 34st International Conferenceon Environmental Systems. Orlando, July 2003.
Rifert V. G., Barabash P. A., Solomakha A. S., Usenko V., Sereda V. V., Petrenko V. G. (2018). Hydrodynamics and heat transfer in centrifugal film evaporator. Bulgarian Chemical Communications, 50, Special Issue K, 49 - 57.
Rifert V. G., Solomakha A. S., Barabash P. A., Usenko V., Sereda V. V. (2020). Justification of the method for calculating heat transfer in film evaporators with a rotating surface. Bulgarian Chemical Communications, 52, Special Issue F, 95-102. DOI: 10.34049/bcc.52.F.0016
Solomakha A. S., Rifert V. G., Barabash P. A., Petrenko V., Yaroshevych M. (2021). Centrifugal flash distiller for life support system. 72 International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021. IAC-21- A1, IP,6, x 66795. 7 pages.
Butuzov A. I. and Rifert V. G. (1973). Heat transfer in evaporation of liquid from a film on a rotating disc. Heat Transfer Soviet Research, 5, 1.