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FEATURES OF STRUCTURAL, ENERGETIC, ELECTROKINETIC
INVESTIGATION OF ENERGY AND ELECTROKINETIC
CHARACTERISTICS OF THERMOELECTRIC MATERIAL TiCo;.xMnxSbh

The crystal and electronic structure, temperature and concentration dependences of the resistivity
and the Seebeck coefficient of the thermoelectric material TiCo;..Mn.Sb, x = 0.01-0.10, in the
temperature range T = 80-400 K have been studied. It was shown that the doping of the initial
TiCoSb semiconductor by Mn atoms is accompanied by the simultaneous generation of structural

defects of acceptor and donor nature and the appearance in the band gap of acceptor band ¢

(substitution of Co atoms by Mn ones) and also donor bands Ei:.H EJ:;. of different nature. The
concentration ratio of the ionized acceptors and donors generated in TiCo;-Mn,Sb determines the
position of the Fermi level £z and the mechanisms of electrical conductivity of the thermoelectric
material. Bibl. 14, Fig. 7.

Keywords: electronic structure, electrical resistivity, Seebeck coefficient.

Introduction

One of the ways to obtain semiconductor thermoelectric materials with high efficiency of
thermal into electrical energy conversion is doping of the base semiconductor by impurity atoms,
which generate structural defects of donor and/or acceptor nature in the crystal. This allows purposeful
changing the values of conductivity o, the Seebeck coefficient a and thermal conductivity k to obtain
the maximum values of thermoelectric figure of merit Z (Z = o®-6/x) [1].

The results of studies of a new semiconductor thermoelectric material TiCo;..Mn.Sb,
x=0.01-0.10, obtained by doping the base semiconductor 7iCoSh (MgAgAs structure type, space

group Fimdzam [2]) by Mn atoms (3d°4s®) by replacing of Co (3d4s?), are given below. It was

expected that the substitution of Co atoms by Mn would generate structural defects of acceptor nature
in the TiCo,;..Mn,Sb semiconductor (the Mn atom has fewer 3d-electrons than Co), which would allow
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us to control the position of the Fermi level £; and change the values of its electrokinetic
characteristics.

In [3], the authors showed that the structure of the base semiconductor 7iCoSbh is defective.
Thus, there are vacancies (Va) (~ 1%) in the crystallographic position 4a of 7i atoms, and additional
Co* atoms (up to ~1%) are located in the tetrahedral voids of the structure, which occupy ~24% of the
unit cell volume [2]. As result, the formula of the 7iCoSh semiconductor is transformed into
(Tio.99Van.01)Co(Co"9.0:1)Sh. Vacancies generate structural defects of acceptor nature in position 4a of Ti
atoms, and the corresponding acceptor band £, appears in the band gap £,. Additional Co* atoms
generate defects of donor nature in the tetrahedral voids of the semiconductor structure, and the donor
band £y, appears in the band gap £,.

All described above explains the nature of the mechanism of simultaneous "a priori" doping of
the initial TiCoSbh semiconductor by donor and acceptor impurities, which makes it heavily doped and
highly compensated [4]. Taking into account that the Fermi level £, in 7iCoSb lies within the band
gap between the states of ionized donors and acceptors, the changes in the ratio between them caused,
for example, by the modes of thermal annealing of samples and their cooling, purity of initial
components, etc., will shift the position of the Fermi level £ relative to impurity bands and
continuous energies bands. For this reason, the compound 7iCoSb is a semiconductor of the hole-type
conductivity at temperatures 7 < 90 K, which is indicated by positive values of the Seebeck coefficient
o, and at higher temperatures the majority carriers are electrons. This temperature dependence of the
type of the majority carriers also indicates a different depth of energy levels: the acceptor states are
smaller and ionized at lower temperatures than the donor ones.

Semiconductor thermoelectric materials based on 7iCoSh were reported in [3-9]. Thus, in Ti;.
VxCoSb and Ti;..MoCoSbh semiconductors, structural defects of acceptor nature are simultaneously
generated as vacancies in the positions of 77 and Co atoms, and occupation of 4a positions of 77 atoms
by V or Mo atoms generates defects of donor nature. The mechanism of simultaneous appearance of
acceptors and donors provides the semiconductor properties of 7i;..V:CoSb and Ti;..MoCoSbh. Doping
of TiCoSh by Sc atoms (3d'4s?) introduced by substitution of Ti atoms (3d°4s”) generates structural
defects of acceptor nature in 77;4ScxCoSb (Sc atom has fewer 3d-electrons than 77), and the ratio of
defects of donor and acceptor nature determines the position of the Fermi level £¢ in the band gap £,

and the mechanisms of electrical conductivity.

The study of the semiconductor thermoelectric material 7iCo;..Ni.Sb revealed a linear variation
in the value of the unit cell parameter a(x), which indicates the substitution of Co atoms by Ni ones. In
this case, donors are generated in the crystal, because the Co atom (3d’4s%) has a smaller number of
3d-electrons than the Ni atom (3d*4s?). The thermoelectric material 7iCo;.Cu,Sh has a different
behaviour of structural parameters depending on the impurity concentration.

The presented results of studying the electrokinetic and energy characteristics of the
semiconductor solid solution 7iCo;..Mn.Sb, x = 0.01-0.10, as well as their comparison with the results
of modeling the electronic structure, will help to identify the mechanisms of electrical conductivity in
order to determine the conditions of synthesis of thermoelectric materials with maximum efficiency of
thermal energy into electrical energy conversion.

Investigation procedures

TiCo;xMn.Sh samples were synthesized by arc-melting the charge of the constituent
components (the content of the main component not less than 99.9 wt.%) in an electric arc furnace in
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an inert atmosphere followed by homogenizing annealing for 720 h at 1073 K. Excess 1-3 wt. % Sh
was used to compensate for losses during the electric arc-melting procedure. The chemical and phase
compositions of the samples were examined by X-ray phase (DRON-4.0 diffractometer, FeKa
radiation) and metallographic analyses (TESKAN VEGA 3 LMU electron microscope equipped with
an X-ray analyzer with energy dispersion spectroscopy (EDRS)). The structural parameters of the
solid solution 7iCo;..Mn.Sh samples were calculated using the Fullprof Suite program [10]. Modeling
of the electronic structure of TiCo;..Mn.Sh was performed by the KKR method (Corringa-Kohn-
Rostoker method) in the approximation of the coherent potential CPA and local density LDA [11].
Licensed software AkaiKKR and SPR-KKR in the LDA approximation for the exchange-correlation
potential with Moruzzi-Janak-Williams (MJW) parameterization were used for KKR calculations [12].
The Brillouin zone was divided into 1000 k-points, which were used to model energy characteristics
by calculating DOS. The width of the energy window was 22 eV and was chosen to capture all semi-
core states of p-elements. The full potential FP in the representation of plane waves was used in the
calculations by the linear MT orbital method. The LDA approximation with MJW parameterization
was used as the exchange-correlation potential. The accuracy of calculating the position of the Fermi
level is + 4 meV. Temperature and concentration dependences of electric resistivity (p) and the
Seebeck coefficient () relative to copper of TiCo;..MnShb were measured in the ranges: 7= 80400
K, x=0.01-0.10.

Research on structural characteristics of TiCo1..Mn,Sb

Microprobe analysis of the concentration of atoms on the surface of 7iCo;..Mn.Sh samples
established their correspondence to the initial compositions of the charge (Fig. 1), and X-ray phase and
structural analyses showed that the powder patterns of samples, including the composition x=0-0.10,
are indexed in the MgAgAs structure type and contain no traces of other phases. (Fig. 2a).

SEM MAG: 1.33 kx | Date(m/dly): 11/26/20 Ivan Franko Mational University of Lviv

SEM HV: 25.0 kV WD: 15.03 mm VEGA3 TESCAN
View field: 208 pym Det: BSE 50 ym
Mn Sb

a) b)
Fig. 1. Photograph of the surface (a) and distribution of elements (b) in the sample TiCog.9sMn 9sSb
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Structural studies of 7iCo,..Mn,Sb solid solution revealed the complex character of the inclusion
of impurity Mn atoms into the semiconductor structure matrix. Since the atomic radius of Mn
(ty»=0.130 nm) is larger than that of Co atom (rc,=0.125 nm), then the increase of the unit cell
parameter a(x) of 7iCo;..Mn.Sh in the concentration range x =0-0.05 is logical (Fig. 2b). Such
behavior of the parameter a(x) should indicate the realization of 7iCo,;.Mn.Sb substitutional solid
solution, where structural defects of acceptor nature are generated in the crystallographic site 4c of Co

atoms. In this case, an impurity acceptor band g¥®™ should be formed in the band gap g, of the

semiconductor.
14000 .
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12000 -
0.5881 -
10000 - ? n
o ! = 0.5880
gsmm F : § E o C-" .
“= 6000 i 2 i 2 . 2 x=0.07 4
2 7 ) ! g et 0.5878 /
o ) st e pi! J o
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Fig. 2. X-ray powder diffraction patterns of samples (a) and variation of the
unit cell parameter a(x) (b) for TiCo..Mn,Sb

However, the appearance of an extremum on the dependence a(x) of 7iCo;..Mn.Sb at x=0.05,
followed by a decrease of the unit cell parameter a(x) at x > 0.05 do not fit into the logic of forming a
substitutional solid solution when Co atoms are replaced by Mn atoms. Thus, if the concentration of
impurity Mn atoms at x=0.05 would be the limit of the existence of solid substitution (the limit of
solubility of these atoms in the semiconductor structure matrix), then the value of the unit cell parameter
a(x) of TiCo;..Mn,Sb should not change significantly. At the same time, the decrease in the values of a(x)
of TiCo,.xMn.Sh at x > 0.05 indicates the existence of a substitutional solid solution, but now the impurity
Mn atoms occupy a different crystallographic position. In this connection, it is worth reminding the study
of Ti;V:CoSb semiconductor [8], where the authors found the fact of simultaneous occupation of V'
(3d°4s%) impurity atoms both in the 4a crystallographic position of 7i atoms, which generated structural
defects of donor nature (7 atom contains more electrons than 77 atom) and in the 4¢ position of Co atoms,
which generated defects of acceptor nature (7 has fewer 3d-electrons than Co).

The most probable in 7iCo;.xMn.Sb at x> 0.05 is the occupation by the Mn atoms of the
crystallographic position 4a of the 7i atoms. Indeed, since the atomic radius of the Mn atom is smaller
than that of 7i (rri=0.146 nm), the decrease of the unit cell parameter a(x) for 7iCo;..Mn.Sb at
x> 0.05 (Fig. 2b) becomes clear. In this case, structural defects of donor nature will be generated in
crystallographic position 4a (Mn atoms have a larger number of 3d-electrons than 7%), and the impurity
donor band ¢lf™ should be formed in the band gap £, of the 7iCo;..Mn,Sb semiconductor.

We can assume that in a real 7iCo;..Mn.Sb crystal these processes occur simultaneously, but the
rate of substitution of certain atoms depends on the concentration of impurity Mr atoms. At lower
concentrations of Mn atoms (x < 0.05) they replace Co atoms to a greater extent, and at x > 0.05 — Ti
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atoms. Herewith, donors and acceptors are generated simultaneously at different rates in 7iCo;..Mn,Sb,
and the semiconductor becomes heavily doped and highly compensated (HDHCS) [13].

However, taking into account the small number of impurity Mn atoms dissolved in the structure
matrix of the initial semiconductor, as well as the poor accuracy of the X-ray method of studying the
structure, we failed to record any other structural changes.

Thus, structural studies of the semiconductor thermoelectric material 7iCo;..Mn,Sh showed a
complex mechanism of impurity inclusion into the semiconductor matrix. The results of experimental
investigations of electrokinetic properties for 7iCo;.Mn.Sh will show the correspondence of the
conclusions to the real processes in the crystal.

Investigation of the electronic structure of TiCos.xMnxSb

To predict the behavior of the Fermi level £, the band gap £,, and the electrokinetic
characteristics of the TiCo,.Mn.Sb semiconductor, the distribution of density of electronic states
(DOS) was calculated (Fig. 3) for an ordered variant of the structure when 77 atoms are substituted by
Mn atoms in the crystallographic position 4a. From Fig. 3 we can see that in the base 7iCoSh
semiconductor the Fermi level g lies near the middle of the band gap E;» but closer to the edge of the
conduction band z.. Since the substitution of Co atoms by Mn ones generates structural defects of
acceptor nature, already at the concentration of 7iCo¢.99Mno.0;Sb the Fermi level g€¢ will drift from the
conduction band = and will be located in the middle of the band gap £,. At higher concentrations of
the acceptor impurity, the concentration of acceptors will increase, and the Fermi level £z will

approach, and then will cross the percolation level of the valence band £ of 7iCo;..Mn.Sh, and the
dielectric-metal conduction transition will occur [14].

14 10
124 i
TiCoSh 8 oo
2 10 ” > TiCo, goMn, ,,Sh
é 861, V
7 2 A / |
Z s [ _ J
A d 1€,
a 5} € 7 £
|
&
0 ; : 2 .
-5 -0 05 0.0 0.5 1.0
g eV
16+ 16+
14 N 14
TiCo,, ,.Mn, .5 o= 5
= 124 r\J 05N g i 12 TiC 0y y”"i'f”'”_f{be
-]
Z 10+ \'\ 2104
& 1]
2 g = 8-
) 7}
g6 Iﬁ ) 8 61
8 4 | J\/!\/ 1EF ) 8 4 _
7] EA 1 Ec 7] bi/
) L8 . €
0 , , —_ . 0 - =
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0.5 1.0
g, eV

Fig. 3. Distribution of density of electronic states DOS for an ordered
variant of the TiCo.Mn.Sb structure
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Approaching the Fermi level £- to the percolation level of the valence band £;; will lead to the
sign inversion of the Seebeck coefficient a(7, x) from negative to positive, and the Fermi level =
crossing the percolation level of the valence band & will change the conduction of the 7iCo;..Mn,Sb
semiconductor from activation to metal type [4, 13]. That is, in the experiment the activation parts will
disappear on the dependences In(p(1/7)), and the values of the resistivity p will increase with
temperature.

The calculation of distribution of the density of electronic states DOS for the ordered variant of
the crystal structure of the thermoelectric material 7iCo;..Mn.Sbh allows modeling the behavior of
electrokinetic characteristics (Fig. 4). In Fig. 4a, as an example, the results of variation of the Seebeck
coefficient a(x,7) are shown at different impurity concentrations and temperatures. As expected, the
values a(x,T) are positive at all concentrations and temperatures, and the maximum values a(x,7) are
reached at concentration x = 0.08. At the concentrations of Mn atoms, x~0.08-0.10, the values of the
thermoelectric power factor Z* .. increase rapidly (Fig. 4b).

s00] TiCo; Mn Sb . 1601 7iCo, Mn Sb vl
300+
-
> J
> 200
<]
100
O_
000 002 004 006 008 0.10 000 002 004 006 008 0.10
x (Mn) x (Mn)
a) b)

Fig. 4. Modeling of variation of the Seebeck coefficient o. (a) and the thermoelectric

power factor Z*.q.. (b) for an ordered variant of the TiCo;.xMn,Sb structure at temperatures:
1-80K;2—-160K; 3—-250K; 4— 380K

Investigation of the electrokinetic and energy characteristics of TiCos..MnxSb

Temperature and concentration dependences of electrical resistivity p and the Seebeck
coefficient a for 7iCo,.Mn,Sb are given in Figs. 5-7.

The temperature dependence of the electrical resistivity In(p(1/7)) for TiCoSbh (Fig. 5) is
typical for doped and compensated semiconductors and is described by known relation [13]:

4 1 &’ a &’ 1
p (T)=p, exp T P T ) (1)
B B

where the first high-temperature term describes the activation of current carriers EE =100.6 meV from
the Fermi level &: to the percolation level of the conduction band &, and the second term, at low
temperatures, — the hopping conduction with energy Eg = 5.1 meV at donors impurity states. As seen

from Fig. 5, for TiCo,..Mn.Sb samples, except for the sample at x=0.05, the dependences In(p(1/7)) are
also described by relation (1).
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Fig. 5. Temperature dependences of electrical resistivity In(p(1/T)) and the Seebeck
coefficient a(1/T) of thermoelectric material TiCo;.xMn.Sb

The variation of the Seebeck coefficient values a(1/7) for 7iCo;..Mn.Sh (Fig. 5) is also a
classic for doped and compensated semiconductors and is described by the relation [14]:
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kgl &°
=SB Sy, 2
a (kBT Y j (2)

where y is a parameter that depends on the nature of scattering. From the temperature dependence of
a(1/T) of TiCoSbh at high temperatures, the value of activation energy £ =214.1 meV is calculated,
which is proportional to the amplitude of large-scale fluctuations of the continuous energies bands of
heavily doped and highly compensated semiconductor [4, 13]. In turn, from the low-temperature
dependence a(1/7) at low temperatures, the value of activation energy £5 = 10.2 meV is determined,
which is proportional to the amplitude of modulation of small-scale fluctuation of HDHCS [4, 13].

The results of measuring the electrokinetic characteristics for the initial 7iCoSbh semiconductor
are fully consistent with those previously obtained in Refs. [3—9]. The high compensation of 7iCoSh
(closeness of concentrations of ionized acceptors and donors) is evidenced by the character of the
variation of the Seebeck coefficient o (Figs. 5, 6). Indeed, TiCoSb is a semiconductor of the hole-type
conduction at temperatures 7=80-90 K, as indicated by the positive values of the Seebeck
coefficient: ogox=7.75 pV/K and ago x=0.71 puV/K. However, at higher temperatures, the sign of the
Seebeck coefficient o of 7iCoSh becomes negative (aos k= -6.33 pV/K), indicating electrons as the
majority charge carriers.

Doping the initial semiconductor 7iCoSb by the lowest concentration of impurity Mn atoms,
x=20.01, leads to substantial changes in the temperature dependence In(p(1/7)) (see Fig. 5). The
presence of a high-temperature activation part on the In(p(1/7)) dependence for 7iCog9oMn01Sb is
evidence of the location of the Fermi level £ within the band gap £,, and the negative values of the
Seebeck coefficient a(7,x) (Figs. 5, 6) specify its position which is at a distance of ~6 meV from the
percolation level of the conduction band # (Fig. 7). In this case, the electrons are the majority carriers
of the semiconductor.

2500 -
2000 -
g Ti o
: i iCo, Mn_Sh = | "
o 1500 Ix" 3_ 34 TiCo, Mn Sh
. e -45 /
1000 3
-60*
500
i 754 44
0 T T T T T T T T T T
0.00 002 0.04 006 008 0.10 0.00 002 004 006 008 0.10
x (Mn) x (Mn)
a) b)

Fig. 6. Variation of electrical resistivity p(x,T) (a) and the Seebeck coefficient a(x,T) (b) for
TiCo;.xMn,Sb at different temperatures: 1 — 80K, 2— 160K, 3—250K, 4— 380 K

The fact that there is no mechanism of hopping conduction g,s at low temperatures in
TiCop,99Mn,0:Sh (low-temperature activation part is absent on the dependence In(p(1/7))) indicates a
significant number of donors, which exceeds the concentration of introduced acceptors. There is an
overlap of the wave functions of the electrons of impurity states near the Fermi level £z, which makes
the mechanism of hopping conduction needless [13].
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Negative values of the Seebeck coefficient a(7,x) for TiCop99Mn0:Sh in the temperature range
80400 K (Figs. 5, 6), when the concentrations of acceptors and donors are close according to DOS
calculations (Fig. 3), can be explained by a slightly higher concentration of uncontrolled donors over
acceptors. But even at higher impurity Mn concentration, in 7iCog,9sMng2Sb, the sign of the Seebeck
coefficient a(7.x) is negative. An increase in the value of resistivity p(x,7) was observed, for example,
at temperature 7=80 K from p(x=0.01)=341 pQ-m to p(x=0.02) ~2612 pQ-m (Fig. 6a). This
increase in the values of p(x,7) is evidence of an increase in the compensation degree of the
semiconductor, which will lead to the appearance of the hopping conduction mechanism ag at low
temperatures (low-temperature activation part appears on the dependence In(p(1/7))).

The change of the position of the Fermi level g in the sample 7iCog sMn,02Sh, which has
shifted from the percolation level of the conduction band & at the distance of ~30 meV (Fig. 7), is
evidence of an increase of the compensation degree of semiconductor (reduction of the difference
between ionized donors and acceptors). Therefore, the increase in the values of the resistivity p(x,7) of
TiCo;.xMn,Sb in the concentration range x = 0.01-0.02 is a direct proof of the generation of acceptors
in the crystal when the Co atoms are substituted by Mn atoms. This generation of acceptors leads to
the capture of free electrons, which reduces their concentration and causes an increase of the resistivity
values p(x,7). On the other hand, the negative values of the Seebeck coefficient a(x,7) are also
experimental evidence that the 7iCo;..MnSh semiconductor has a significant concentration of donors
that is greater than the number of introduced acceptors (x =0.02), or in the crystal acceptors and
donors are generated simultaneously by different mechanisms.
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Fig. 7. Variations of the activation energies values
£{' (1) and £y (2) for TiCo;.Mn.Sh

The appearance of the maximum on the dependence of the resistivity p(x, T) of TiCo;..Mn.Sh
(Fig. 6a) is an argument that the generation rates of acceptors and donors in the semiconductor are
different. At the point of maximum of dependence p(x, 7) for TiCo,.Mn,Sb, these rates are balanced.
However, the number of acceptors is slightly less than the number of free electrons. This is indicated
by the negative values of the Seebeck coefficient a(x, T) (Fig. 6b). Thus, at 7= 80 K, to balance the
ionized acceptors and donors, it is necessary to introduce a concentration of Mn atoms (x = 0.02) that
generates acceptors so that the concentrations of holes and electrons are close. At higher temperatures,
ionization of deep donor states takes place, which increases the concentration of electrons, and
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therefore it is necessary to introduce a higher concentration of impurity Mn atoms into the crystal
(x=10.03). It is logical that the maximum on the dependence p(x,T) appears at x = 0.03 (Fig. 6a). The
fact of shifting the maximum on the dependence p(x,7) with increasing temperature is evidence of the
existence of several mechanisms for generating donors of different nature (origin), which generate in

the band gap £, donor bands Ejf., and 95 of different nature with different depths of their location

relative to the percolation level of the conduction band &.

The experimental result described above does not correspond to the conclusions made in the
calculations of the electronic structure of the 7iCo;..Mn.Sb semiconductor for the ordered variant of its
crystal structure (Fig. 3). When Co (3d’4s®) atoms are substituted by Mn (3d°4s*) atoms in TiCo;.
«Mn,Sh, acceptors should be generated in the semiconductor, which will capture all free electrons at
concentration x = 0.02. This process must not be accompanied by inversion of the sign of the Seebeck
coefficient a, and free holes will remain the majority charge carriers of the semiconductor (Fig. 4a).
We can assume that more complex structural changes occur in 7iCo,..Mn,Sbh than the substitution of
Co atoms by Mn. At the same time, structural defects of acceptor and donor nature are generated in the
crystal by different mechanisms, but the concentration of donors exceeds the concentration of
acceptors.

Calculations of the location depth of the Fermi level = relative to the percolation level of the
conduction band £ of 7iCo;..Mn.Sb at a higher concentration of impurity Mn atoms (x > 0.07) (the
sign of the Seebeck coefficient o(7,x) is negative) showed that the Fermi level &z very closely
approached the percolation level: €z(x=0.07) = 1.8 meV and £g(x=0.10) = 1.6 meV (Fig. 7). The
presence of high- and low-temperature activation parts on the In(p(1/7)) dependences of TiCo;..Mn.Sb
at x>0.07 is possible provided semiconductor compensation (simultaneous existence of ionized
donors and acceptors). However, the fact that the Fermi level =g lies within the band gap £, near the
percolation level of the conduction band indicates a weak compensation of the semiconductor, when
the concentration of free electrons is much higher than the concentration of holes.

What is the reason for such, at first glance, illogical behavior of electrokinetic and energy
characteristics in the semiconductor thermoelectric material 7iCo;..Mn.Sb?

If we remind that in the structure of the base semiconductor 7iCoSb there are simultaneously
~1% of vacancies in position 4a of the 7i atoms that generate acceptors, and in the tetrahedral voids of
the structure there are ~1% of additional Co* atoms that generate donors [3], the situation becomes
clearer. In turn, structural studies of 7iCo;..Mn,Sb showed that the introduction of impurity Mn atoms
into the disordered structure of the base semiconductor 7iCoSb is accompanied by its ordering. This
means that the vacancies in position 4a of the 7i atoms, and also the corresponding acceptor band &,
disappear. Instead, the 77 atoms occupying the vacancies in position 4a are a source of electrons that
generates the donor band g£}. Partial occupation of tetrahedral voids of the structure by impurity Mn

atoms is a mechanism of the formation of another donor band z3.

Conclusions

The result of a complex investigation of the crystal and electronic structures, electrokinetic and
energy characteristics of the thermoelectric material 7iCo,..Mn,Sb is the establishment of the nature of
structural defects of donor and acceptor nature. It was shown that doping of the base semiconductor
TiCoSbh by Mn atoms simultaneously generates the acceptor band £4 (substitution of Co atoms by Mn)
and the donor bands £} and g% of different nature. The ratio of the concentrations of ionized acceptors

and donors generated in 7iCo,.Mn.Sh determines the position of the Fermi level £z and the
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mechanisms of electrical conduction. However, this issue requires additional research, in particular,
modeling the electronic structure of thermoelectric material under different conditions of introduction
into the structure and concentrations of impurity Mn atoms. The investigated 7iCo;.Mn.Sb solid
solution is a promising thermoelectric material.
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THERMAL CONDUCTIVITY OF Bi;Se; POLYCRYSTALS

The dependences of electronic and lattice thermal conductivity on the composition (59.9 - 60.0) at.
% Se of BisSes polycrystals subjected to a long-term annealing at 650 K. A non-monotonic
behavior of these concentration dependences, associated with a change in the phase composition
and defect structure under the deviation from stoichiometry, was observed. The boundaries of the
Bi;Se; homogeneity region were estimated. The results of the present work confirm those obtained
earlier in our study of the effect of deviation from stoichiometry (59.9 - 60.0 at.% Se) on the
electrical conductivity, Hall coefficient, Seebeck coefficient and microhardness of BisSe;s
polycrystals after a similar preparation technology. Bibl. 33. Fig. 3.

Keywords: bismuth selenide, stoichiometry, concentration, defect structure, thermal conductivity

Introduction

Solid solutions based on the bismuth selenide are the well-known n-type thermoelectric (TE)
materials for cooling devices [1]. Bi,Ses belongs to a narrow-gap semiconductor group and
demonstrates the unique properties of topological insulator (material which is dielectric in the bulk
with a metallic layer on the surface) [2]. The efficiency of a TE energy convertor depends on the value
of TE figure of merit Z of a TE material (Z = $*-6/A, where ¢ and / are the electrical and thermal
conductivities, respectively, S is the Seebeck coefficient).

Bi,Se;s is a bertollide [3-5] with the homogeneity region (HR) shifted to the Bi-rich side at 7>
675 K [6]. Bi;Ses melts congruently with an open maximum at 979 K [3,7,8], which is deviated from
stoichiometry and located at (59.98 + 0.01) at. % Se [3-6,9].

BixSes; always exhibits n-type conductivity which is commonly associated with the presence of a
large number of Se vacancies (Vsc1) [5,6,10-21] acting as donors. The existence of Vg1 was confirmed
by a number of authors [6,12,15-18,22-24] with the help of different experimental and theoretical
methods (scanning tunneling microscopy, measurements of the Hall coefficient in the temperature
range 80-330 K, calculation of the formation energies of various types of defects etc.). Later [24-26],
the coexistence of Vs and antisite defects (AD) — bismuth atoms that occupy positions of selenium
ones (Bise), in the n-Bi,Ses; was suggested.

The deviation from stoichiometry in chemical compound leads to the appearance of intrinsic
defects, the concentration of which varies within the HR of the compound which determines the
properties of the TE material. Analysis of the literature showed, that the HR boundaries of the Bi»Se;
were determined just for temperatures above 675 K [6], and the boundaries of the maximal HR are
(59.984 - 59.997) at.% Se at 900 K. Despite the fact that BirSes is used for TE applications at
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temperatures close to room temperature, the investigation of the HR boundaries at these temperatures
are not available in the literature. In our previous work [27], based on the study of the electrical
conductivity, Hall coefficient, Seebeck coefficient and microhardness of Bi,Se; polycrystals with
deviation from stoichiometry to the Bi-rich side after a long-term annealing at 670 K with subsequent
cooling to the room temperature, the HR boundaries were estimated. The investigation of the thermal
properties of such crystals could expand the range of research, supplement and/or confirm the results
of [27]. As far as we know, no study of the thermal properties of BirSes polycrystals under the
deviation from stoichiometry has been performed yet.

The typical values of A for Bi>Ses single crystals lie within 2.5-3.1 W-m™-K™' [12,28,29] and for
pressed polycrystals — within 1.0-1.3 W-m™-K™' [30-32]. It is also known, that usually electronic
component of thermal conductivity is comparable to the lattice one in single [28] and pressed [33]
crystals. The values of Z=5-10* K [29] and Z = 1.6-10* K™' [33] at a room temperature are typical
for single and polycrystals Bi,Ses, respectively.

The purpose of the work was to study the effect of deviation from stoichiometry on the thermal
conductivity and TE figure of merit of Bi>Ses polycrystals at a room temperature.

Experimental

Bi-Se polycrystals with different Se concentrations (59.9 - 60.0) at. % were prepared by fusing
high-purity (99.999 at. % of the main component) Bi and Se in evacuated quartz ampoules at a
temperature of 7 = (980 + 10) K. The melt was kept at this temperature for 3 h with vibrational
stirring. After that the alloys were annealed for 200 h at 7 = 820 K with subsequent cooling to room
temperature in the turned-off furnace. The synthesized alloys were used for subsequent preparing of
powders for pressing with particle size of 200 pm. Pressed samples were prepared by cold-pressed
method at a fixed load of 400 MPa for 60 s with subsequent homogenizing annealing in evacuated
quartz ampoules at 650 K for 250 h with subsequent cooling to room temperature.

The thermal conductivity 4 was measured by the dynamic A-calorimeter method in monotonic
heating regime with help of IT-A-400 experimental facility. The errors of A measurement did not
exceed + 5 %. The measurements were carried out at a room temperature.

The determination of the lattice component A, of thermal conductivity was determined by
subtracting the electronic component Aq from the total thermal conductivity. The Ay values were
calculated with the help of the Wiedemann-Franz law:

A, =LoT,

where L is the Lorenz number (L =2.44-10® V%K’ for degenerate statistics), T is the
temperature. The values of ¢ obtained in our previous work [27] for Bi»Ses polycrystals with a deviation
towards the excess of Bi after a similar preparation technology were used for calculation of A.

Experimental results and discussion

The investigated polycrystals were homogeneous in its chemical composition and properties
[27].

The obtained room-temperature dependence of A on the composition of the Bi-Se pressed
crystals is shown in Fig. 1.
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Fig. 1. Room-temperature dependence of thermal conductivity /. on Se content in Bi-Se polycrystals

The results of calculation of A and A,n for Bi-Se polycrystals with different composition are

shown in Fig. 2.
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Fig. 2. The dependences of electronic A (a) and lattice thermal conductivity
Api (b) on Se content in Bi-Se polycrystals

The calculation of the value of the TE figure of merit of Bi2Ses crystals with an excess
of Bi for different composition was made using the values of ¢ and S, obtained in our previous
work [27], and 4, obtained in the present work (Fig. 3).

Z (10*.K")

4 1 L 1 L 1 L 1 L 1 L
59,90 59,92 59,94 59,96 59,98 60,00
Se (at. %)

Fig. 3. The dependence of the TE figure of merit Z on Se content in Bi-Se polycrystals
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As can be seen from Fig. 1 and Fig. 2, under the deviation from the stoichiometry of Bi,Se; to
the Bi-rich side, general trends of increasing in e and decreasing in 4 and A, are observed. Starting
from ~ 59.95 at.% Se, the values of A, 4 and A, practically do not change. In the composition range
(59.95-60 at.% Se) the concentration dependences of the thermal conductivity and its components are
non-monotonic and exhibit an oscillating behavior. From Fig. 1 and Fig. 2 one can identify five
regions with different dependence behaviors of properties on Se content:

1) 60.0 - 59.998 at.% Se, where A tends to decrease, and 4 and Ay, tend to increase;
2) 59.998- 59.985 at.% Se, where A increases, A and A, decrease;

3) 59.985- 59.98 at.% Se, where Aci decreases, 4 and A, increase again;

4) 59.98 - 59.95 at.% Se, where increase in A and decrease in A and Ay, are observed;
5) 59.95 - 59.90 at.% Se, where A, 4 and Apn do not change.

It should be noted that behavior of ¢ (see [27]) and A« (Fig. 2) on concentration coincide. This is
logical, because A is determined by the values of ¢. The dependences of A and A, on the composition
have an opposite character: the positions of observed maxima of the A correspond to the positions of
the minima of Ayp.

A complicated behavior of the concentration dependences of compound properties under the
deviation from stoichiometry indicates the crossing of the phase boundary. But within the HR, which
is a single-phase region, such a behavior can indicate the self-organization processes in the compound
and be determined by the redistribution of atoms and non-stoichiometric defects. Taking into account
the long-term isothermal annealing at 650 K carried out for Bi-Se polycrystals after its pressing, one
can assume that a phase state close to the equilibrium state at 650 K was reached and the subsequent
cooling in the turned-off furnace to room temperature does not change this state.

According to the phase diagram of Bi-Se [3,4,6], a two-phase region (Bi,Se; + Se) under the
deviation from stoichiometry to the Bi-rich side should exist at a temperature 7 > 675 K. At
temperature decrease below 675 K, the phase boundary may be shifted. Taking into account the trend
of the boundary shifting with temperature decrease from 900 K to 675 K [3,6], the shift of phase
boundary is most likely to occur at a lower Se concentration. So, it assumed that the first concentration
range 60.0-59.998 at.% Se corresponds to the two-phase region (Bi>Se; + Se), which is in the state of
decomposition of the solid solution. In this region, many different factors affect the character of the
composition dependences of properties (for example, the number and size of precipitated particles,
cooling rate, etc.).

In the second region (59.998 - 59.985 at.% Se) we could expect the reaching of the HR
boundary of Bi2Se; from the Se-rich side. We can assume that subsequent deviation from
stoichiometry towards the Bi excess in this region leads to Vs, increase, which are electrically active
defects and cause an increase in electron concentration (Ae increases) and creates additional centers of
phonon scattering in the lattice (A, decreases).

The further deviation from stoichiometry (region 59.985 - 59.980 at.% Se) should result in
further increase in the concentration of non-stoichiometric defects. It can be assumed, that the
formation of an another type of non-stoichiometric defects — acceptor type AD (Bise) [18,24] —
becomes thermodynamically favorable. The appearance of Bi atoms at Se positions can lead to an
increase in Apn. Taking into account that Bis. defects provide acceptor effect [18,23,24], these defects
can partially compensate the donor action of Vs and lead to the decrease in A in this region.

The next concentration region 59.98 - 59.95 at. % Se (L« increases, 4 and Ay, decrease)
presumably corresponds to the reaching of the boundary of the BiSe; HR from the Bi-rich side.
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Further practically unvaried values of thermal properties of crystals in the range 59.95 - 59.90 at.% Se,
most probably, indicate the precipitation of a second phase BiSe [3] upon crossing the solidus line.

Thus, based on the analysis of the obtained experimental data (Fig. 1, Fig. 2) we assumed that
the boundary of the Bi>Se; HR on the Bi-rich side lies in the range 59.98 - 59.95 at.% Se, and on the
Se-rich side corresponds to ~ 59.998 at% Se. It should be noted that the HR boundaries of the Bi,Se;
and the character of change in the defect structure, experimentally determined in the present work,
coincide and add further confirmation of the results of our earlier work [27].

Analysis of calculated electronic and lattice components of 1 shows that the contribution of
electronic component for all investigated samples is close to the lattice one. It should be also noted
that under the deviation from stoichiometry to the Bi-rich side the contribution of A, to the total
thermal conductivity becomes smaller (see Fig. 2b). It is logical to associate this tendency with
creation of different types of crystal defects. The latter indicates that phonons scatter strongly on
defects (presumably, Bis. and Vse1).

It should be noted that the value of A, for the stoichiometric crystal (Jyn= 0.85 W-m™-K") was
slightly lower than the data available in the literature (A, = 1.07 W-m™-K™' [32]) for pressed crystals.
This difference in the values of A, could be explained by a different method of preparing samples
(spark-plasma sintering at a temperature of 593 K for 5 min at a uniaxial pressure of 40 MPa was used
in [32]).

As can be seen from Fig. 3, the value of Z also exhibits a non-monotonic type of dependence on
the Se content in Bi-Se polycrystals. It can be seen that the largest value of Z=8-10* K™ is inherent in
a crystal with the stoichiometric composition, and even under a slight deviation from the stoichiometry
towards the Bi excess (59,998 at.% Se), the value of Z drops sharply (Z = 4.2:10* K™), which is
important from a practical point of view. It should be noted that the values of Z obtained here for Bi-
Se crystals at a room temperature were slightly higher than those known in the literature for pressed
stoichiometric Bi»Se; [29,33]. This gain in the value of Z is a consequence of the lower value of A and
the higher value of S [27] of the crystal, which was subjected to a long-term annealing at 650 K with
subsequent cooling to room temperature in the turned-off furnace in the present work, compared with
the literature data [29,33] for the pressed crystals.

Conclusions

The effect of the deviation from stoichiometry to the Bi-rich side (59.9-60.0) at. % Se on the
electronic and lattice components of thermal conductivity of the Bi»Se; polycrystals was studied. The
boundaries of the Bi»Se; homogeneity region (on the Se-rich side — 59.998 at. % Se, and on the Bi-rich
side — in the interval of 59.98-59.95 at. % Se) after a long-term annealing at 650 K with subsequent
cooling to the room temperature were estimated.

The estimated HR boundaries of Bi»Se; confirm the previous results [27] in the analysis of the
concentration dependences of the electrical conductivity, Hall coefficient, Seebeck coefficient and
microhardness.

The non-monotonic behavior of the concentration dependences of the electronic and phonon
thermal conductivities at a room temperature attributed to a change in the phase composition and
defect structure under the deviation from stoichiometry of Bi,Se; was observed. It is supposed that
within the homogeneity region with the dominant type of non-stoichiometric defects (selenium
vacancies) the formation of antisite defects Bis. occurs.

This work was supported by the Ministry of Education and Science of Ukraine (Project No.
MO0625).
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COMPUTER SIMULATIONOF CYCLIC TEMPERATURE EFFECT
ON THE ONCOLOGICAL NEOPLASM OF THE HUMAN SKIN

The paper presents the results of computer simulation of the temperature effect on the tumor of the
human skin in a dynamic mode. The physical, mathematical and computer models of the human
skin with oncological neoplasm (melanoma) were built with regard to thermophysical processes,
blood circulation, heat exchange, metabolic processes and phase transition. As an example, the
case is considered when a work tool is located on the tumor surface, the temperature of which
changes cyclically according to a predetermined law in the temperature range [-50 + +50] °C.
Temperature distributions in the tumor and various layers of human skin in the cooling and
heating modes have been determined. The results obtained make it possible to predict the depth of
freezing and heating of biological tissue, in particular a tumor, at a given temperature effect.
Bibl. 59, Fig. 6, Tabl. 2.

Keywords: temperature effect, human skin, tumor, melanoma, dynamic mode, computer
simulation.

Introduction

Cryodestruction [4 5, 8 27] and hyperthermia [28 32] of biological tissue are increasingly used
to neutralize malignant and benign oncological neoplasms of the human skin [1 7]. When performing
such procedures, it is important to control the temperature in the tumor, but there are still no tools to
determine the temperature in the tumor during cryodestruction and hyperthermia. Thus, during the
above procedures, the temperature in the tumor remains unknown, and, therefore, the destruction of
oncological neoplasm remains an open question.

One of the methods for determining the temperature in a tumor with a given cyclic change in the
temperature of the work tool is computer simulation [33 — 35]. However, in the computer models used so
far, blood circulation, heat exchange, metabolic processes and other thermophysical processes are taken
into account, but the phase transition in biological tissue is disregarded [36 38].

Therefore, the purpose of this work is computer simulation to determine the temperature in the
tumor, taking into account the phase transitions.

Physical model

A physical model (Fig. 1) of the area of biological tissue of human skin is a structure of three
skin layers (epidermis 1, dermis 2, subcutaneous layer 3), inner biological tissue 4 and tumor 5 which
is characterized by thermophysical properties [33-35, 39-43], such as thermal conductivity x;, specific
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heat C;, density p;, blood perfusion rate ws, blood density ps, blood temperature 7j, blood heat
capacity C, and specific heat release Ouer due to metabolic processes and latent heat of phase
transition L. The thermophysical properties of biological tissue of the skin and tumor in the normal
[44-49] and frozen states [50, 51] are given in Tables 1, 2. In this paper, we use a 2D model with axial
symmetry, because the proposed physical model is symmetric about the y-axis. Also, such a model
allows increasing the speed of calculations without loss of accuracy [33-35, 39 — 43].

The corresponding layers of biological tissue 1-5 are considered as bulk heat sources ¢;, where:

4 =0peri tP, Cyr0,,-(T,-T), i=1.5. (D

The geometric dimensions of each skin layer 1-4 are a;, b;, and of tumor (melanoma) are as
follows: thickness b5 and radius #n. The skin surface accommodates a work tool 6 with thickness d and
radius c¢. The temperatures at the boundaries of respective layers 1-5 and work tool 6 are 7}, T», T3, T4,
Ts, Ts, T7. The temperature inside biological tissue is 7;. The ambient temperature is Ty. The surface of
the human skin with temperature 7’ is in the state of heat exchange with the environment (heat transfer
coefficient o and radiation coefficient ¢) at temperature 79. The lateral surface of the skin is
adiabatically insulated.

‘l-"{; T

!: 1, ! " TU* Ts
6:):‘ — i
— T,
2 ' T,
3 — ¥
i—a i i qg=0

0 ¢ T, a T X

Fig.1. Physical 2D model of the human skin with a tumor: 1 — epidermis, 2 — dermis,
3 — subcutaneous layer, 4 — inner biological tissue, 5 — tumor (melanoma), 6 — work tool

Mathematical description

In the general form, the equation of heat exchange in biological tissue is as follows [52]:

oT

G =V (6 V)4, G0y (T = 1)+ Qe 1215, @)

eti?
where C,, k, is specific heat and thermal conductivity of the respective skin layers and tumor,
p, is blood density, C, is blood specific heat, ®,, is blood perfusion of respective layers,

T, is blood temperature, T is temperature of biological tissue; O, . is heat released due to metabolic

eti
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processes in each layer.

The term on the left side of equation (2) is the rate of change of thermal energy contained in a
unit volume of biological tissue. The three terms on the right part of this equation represent,
respectively, the rate of change of thermal energy due to thermal conductivity, blood perfusion and
metabolic heat.

Heat transfer equation in biological tissue (2) is solved with the corresponding boundary
conditions. The temperature on the surface of work tool changes by the given dependence in the
temperature range Ts = [-50 + +50] °C. The temperature inside biological tissue is T1 =+37°C. The
lateral surfaces of biological tissue are adiabatically insulated (q = 0), and the upper surface of the skin
is in a state of heat exchange (heat transfer coefficient o and radiation coefficient &) with the
environment at temperature 7.

30| =a-(-T)+e-0-(T) - T"), 3)
by
where ¢i(x,y,t) is heat flux density of the i-th layer of the skin and tumor, a is coefficient of convective
heat exchange of the skin surface with the environment, ¢ is radiation coefficient, ¢ is the Boltzmann
constant, T’ is surface temperature of the human skin, 7y is ambient temperature (79=+22 °C).
At the initial moment of time ¢ = 0 s, it is considered that the temperature in the entire volume of
the skin is T =Ty, = +37°C, that is, the initial conditions for solving equation (2) are as follows:

Tixy,00 =T, i=1.5. 4)

As a result of solving the initial boundary value problem (2) - (4), the distributions of
temperature Ti(x,y,¢) and heat fluxes gi(x,),t) in the corresponding layers of the skin and tumor at any
time are determined.

During the freezing process, a phase change will occur in the cells at the freezing point, while
there will be a loss of phase transition heat (L) and the temperature in these cells will not change. The
phase transition in biological cells occurs in the temperature range (-1 + -8) © C. In the temperature
range (-1 + -8) © C, when the cells are frozen, the heat of the phase transition is absorbed which in this
work is simulated by adding the corresponding value of L to the heat capacity C [50, 51].

Freezing of the human skin causes vasoconstriction and freezing of blood, therefore the value of

blood perfusion ®,, tends to zero. In addition, cells will not be able to generate metabolic heat when

frozen, and metabolic heat O

meti

will be zero at temperatures below zero.

In the frozen state, the properties of biological tissue of the skin will have the following values
(5)-(8), where i = 1..4:

Ca
c c T>-1°C
o +C
c-]—L L Tothe  geccr<_ioc, (5)
—-1-(-98) 2
T <-8°C
Co
K
o T>-1°C
Koy T K o < o
K, = T —8°C<T<-1°C, 6)
T <-8°C
Ki2)
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Oy T>-1°C

0,.. =10 -8°C<T<-1°C, (7)
0 T <-8C
By T>-1°C

@, =10 -8°C<T<-1°C. (8)
0 T <-8°C

Accordingly, the properties of tumor in the frozen state will have the following values (9)-(12):

G T>-1°C
Cyp +C -
c,=l—L Tt geccr<_joc, ©)
—1-(=8) 2
T<-8C
C5(2)
50 T>-1°C
K, =550 sy —8°C<T<-1°C, (10)
2
T<-8C
KS(Z)
Qmet(S) T> _IOC
Qm€t5 = 0 _SOCSTS_loca (11)
0 T<-8C
Oys) T>-1°C
®, =10 —8°C<T<-1°C. (12)
0 T<-8C

Computer simulation example

To create a computer model, as an example, we used the following geometric dimensions of the
skin — the thickness of epidermis ,=0.08 mm, dermis »,=2 mm, subcutaneous layer b5=10 mm, inner
tissue b,=30 mm, radius ¢~=20 mm (i=1..4) and tumor (melanoma) — thickness b5 = 1 mm and radius
n=2mm [53, 54]. The surface of the skin accommodates a work tool 6, which is a copper probe in
the form of a round disc. Its geometrical dimensions are as follows: thickness d =1 mm and radius
¢ =3 mm. This model does not take into account the thermal contact resistance between the work tool
and the human skin, since it is estimated to be insignificant and makes R. = 2-10° m*K/W [55]. The
temperature inside the biological tissue is 7; = +37°C. The ambient temperature is 79 = +22 °C. As an
example, this paper considers the case when the temperature of the work tool varies according to a
given dependence in the temperature range of Ts = [-50 + +50] °C. However, it is noteworthy that the
developed computer model makes it possible to consider the cases when the temperature of work tool
T«t) varies in any temperature range or according to any predetermined function. The thermophysical
properties of biological tissue of the human skin and tissue in the normal and frozen states are given in
Tables 1, 2 [44 — 49].
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Table 1.
Thermophysical properties of biological tissue of the human skin
and tumor in the normal state [44 — 49]
Subcuta- T
Layers of biological tissue | Epidermis| Dermis beuta Internal tissue ot
neous layer (melanoma)
Specific heat,
3590 3300 2500 4000 3852
C (J-kg"K™)
Th 1 conductivity,
erma’ conEuelvILy 0.24 0.45 0.19 0.5 0.558
K (Wm -K")
Density,
., 1200 1200 1000 1000 1030
p (kgm™)
Metabolism,
CHAbOLIST 368 368 368 368 3680
Omer (W/m”)
Blood perfusion rate,
0 0.0005 0.0005 0.0005 0.0063
®p (ml/s'ml)
Blood density,
5 1060 1060 1060 1060 1060
Py (kg'm™)
Blood heat ity,
00¢ eat capastty 3770 | 3770 3770 3770 3770
Cy (J’)kg"-K™)
Table 2
Thermophysical properties of biological tissue of the human
skin in the frozen state [50, 51]
. . . . . Measurement
Thermophysical properties of biological tissue Value y
units
Heat capacity of frozen biological tissue (C>) 1800 Jm?°C
Thermal conductivity of frozen biological tissue () 2 Wt/m°C
Latent heat of phase transition (L) 250:10° Jm?
Upper temperature of phase transition (77) -1 °C
Lower temperature of phase transition (7%) -8 °C

Thus, a three-dimensional computer model of the human skin with oncological neoplasms
(melanoma) was created. To construct a computer model, the Comsol Multiphysics software package
was used [56], which makes it possible to simulate thermophysical processes in biological tissue,
taking into account blood circulation, heat exchange, metabolic processes and phase transition.

The distribution of temperatures and heat flux densities in biological tissue was calculated by
the finite element method, the essence of which is that the object under study is divided into a large
number of finite elements and in each of them a function value is sought for that satisfies given
second-order differential equations with the corresponding boundary conditions. The accuracy of
solving the formulated problem depends on the level of partitioning and is ensured by the use of a
large number of finite elements [56] and is 7=40.1 °C.
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Computer simulation results

According to the known methods of cryodestruction and hyperthermia of biological tissue [11,
31, 57-59], the cooling rate should be at least (40-50) °C/min, and the heating rate (20-25) °C/min.
Therefore, in this paper, as an example, we consider the case in which the temperature of the work tool
Ty(t) varies in the range [-50 +~ +50] © C as follows (Fig. 2, graph 1). First, cryodestruction of the tumor
is carried out with a cooled work tool at a temperature of 7=-50°C for =30 s, then the temperature of
the work tool changes from -50°C to +50°C for the next 240 s (note that in this case when the
temperature changes, the freezing of the tumor continues to grow for a few more seconds), following
which a heated work tool is used to conduct tumor hyperthermia at a temperature of 7=+50°C for
t=30's. The subsequent decrease in temperature to T = - 50 °C occurs within 120 s, and then this
temperature effect is repeated cyclically to achieve tumor destruction.

T C
e . SO
40
30
20|
10|

0

0 ‘ 100 200 300 400 500 600 700 800 ' t,c

Fig.2. The plots of work tool temperature (1) and tumor temperature
(2) versus time. The tumor temperature was taken at the depth of 1 mm from
the skin surface along the Oy axis.

With the help of computer simulation, the temperature distribution in the tumor was determined
at different points in time with the corresponding specified cyclic change in the temperature of the
work tool. The results of computer simulation, namely the temperature in the tumor at a depth of 1 mm
from the skin surface on the Oy axis, are shown in plot 2, Fig.2.

Figs.3-6 show the temperature distributions in the cross-section of the skin with the tumor the
surface of which accommodates a work tool the temperature of which changes cyclically according to
the above dependence in the temperature range of [-50 +~ +50]°C.

34 Journal of Thermoelectricity Ne3, 2020 ISSN 1607-8829



Anatychuk L.1., Kobylianskyi R.R., Fedoriv R.V.
Computer simulation of cyclic temperature effect on the oncological neoplasm of the human skin

30

20

110

-

i -10

-40

-50

Fig.3. Distribution of temperature in the cross-section of the skin with a tumor the surface of which
accommodates a work tool at a temperature of T=50°C at point of time t=30s

50

45

40

35

30

Fig. 4. Distribution of temperature in the cross-section of the skin with
a tumor the surface of which accomodates a work tool at a temperature
of T=+50°C at point of time t=300 s
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A 4

Fig.5. Distribution of temperature in the cross-section of the skin with a tumor the surface of which
accommodates a work tool at a temperature of T=-50°C at point of time t=450 s
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Fig.6. Distribution of temperature in the cross-section of the skin with a tumor the surface of which
accommodates a work tool at a temperature of T=+50°C at point of time t=720 s

From Fig .3, 4 it is seen that at t = 30 s the skin tumor (melanoma) is cooled at point 1 to a
temperature of -48.8 © C, and at point 2 to -30.5 ° C (it should be noted that when changing temperature
from -50 ° C to + 50 ° C freezing of the tumor at point 2 continues to increase to a temperature of T =-31.3
°C fort=4s). And at t =300 s the temperature at point 1 of the tumor rises to +49.9 ° C, and at point 2 of
the tumor the temperature is + 42.8 ° C. Since the tumor is in direct contact with the work tool, the
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temperature at point 1 of the tumor will be close to the temperature of the work tool.

Subsequently, with repeated cyclic temperature exposure (Figs. 5, 6), it is observed that at t =
450 s after cooling, the temperature at point 1 of the tumor reaches 49.4 ° C, at point 2 of the tumor the
temperature is -32.3 ° C. Att= 720 s, the temperature at point 1 of the tumor rises to + 48.6 ° C, and at
point 2 of the tumor the temperature is + 40.1 ° C.

It is established that taking into account the phase transition increases the accuracy of determining
the temperature in the tumor at AT = 6 ° C and the depth of freezing (heating) by Ah = 0.8 mm.

The obtained results make it possible to determine the depth of freezing and heating of the skin
layers, in particular the tumor, at a given cyclic temperature effect to achieve maximum efficiency
during cryodestruction and hyperthermia. The developed computer model in dynamic mode allows
determining at any time the temperature distributions in different layers of the skin and tumor with a
predetermined arbitrary function of temperature change of the work tool with time Tx?).

Conclusions

1. A computer model was developed to determine the temperature in the tumor, taking into account
the phase transitions in the dynamic mode for any given cyclic change in the temperature of the
work tool.

2. Using computer simulations, it was found that taking into account the phase transitions increases the
accuracy of determining the temperature in the tumor by AT = 6 °© C and the depth of freezing
(heating) by Az = 0.8 mm.
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KOMIT'IOTEPHE MOJIEJIFOBAHHA
HUKJ/JIITYHOI'O TEMIIEPATYPHOI'O BILVIUBY
HA OHKOJIOTTYHE HOBOYTBOPEHHSA WIKIPU JIFOAUHUA

Y pobomi masedeno pezynemamu Komn 'tOmMepHO2O0 MOOET08AHHA MEeMNEPAmypHo20 8NIU8y Hd
NYXAUHY WKipu y Ounamiunomy peosicumi. [106y0osano ¢hizuuny, mamemamuyny i KOMN 1OmepHy
MoOeni WKipu 3 OHKONO2IYHUM HOBOVMBOPEHHAM (MENIAHOMOI0) i3 8PAXYBAHHAM MenioQizuuHux
npoyecis, Kposoobizy, menioooMiHy, npoyecié Memabonizmy ma azo8020 nepexody. Ak npuxiao,
PO32NAHYMO  8UNAOOK, KOJU HA NOBEPXHI NYXAUHU 3HAXOOUMbCA PpobOUULl  THCMPYMEHM,
memMnepamypa AK020 3MIHIOEMbCA YUKIIYHO 34 Hanepeo 3a0anol0 3aiedcHicmio 'y O0iana3omi
memnepamyp [-50 + +50] °C. Buznaueno po3nodinu memnepamypu y nyXauHi ma y pisHux wapax
WIKIpU 8 pedcumax o0xono0dicenHs i Haepigy. Ompumani pesyrbmamu OAMb MONCIUBICIb
sUZHaAUamu 2AUOUHY NPOMEP3aHHsA | Npozpiey 0I0N02IYHOI MKAHUHU, 30KpeMma NYXJIUHU, Npu
3a0anomy memnepamypHomy enausi. bion.59, puc. 6, mabn. 2.
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KOMIIBIOTEPHOE MOJIEJUPOBAHUE TUK/JIMYECKOI'O
TEMIIEPATYPHOI'O BO3JEACTBUS HA OHKOJIOTHYECKHUE
HOBOOBPA30BAHUSA KOKH YEJIOBEKA

B pabome npusedenvi pesyibmamvl KOMHLIOMEPHOZO MOOEIUPOBAHUS  MEMNEPANYPHO2O
8030€liceUsi Ha ONYXoib KOJMCU 6 OuHamudeckom pedcume. Ilocmpoenvr Qusuueckas,
MAMeMamuyeckas u KOMNbIOMEPHAsL MOOeNU KOJNMCU C OHKOIOSUYECKUM HOB000PA308aHUEM
(menanomoll) ¢ yuemom MmMenIOQuUIULECKUX NPOYeccos, KposooOpaujeHus, menioooMeHa,
npoyeccos memabonusma u hazoeozo nepexoda. B kawecmee npumepa, paccmMompen CLyua,
K020a Ha NOGEePXHOCMU ORYXOIU HAXOOUMCs padouyuti UHCMPYMEHm, MeMnepamypa Komopozo
usMensiemcst  YUKIU4eCKU No  3apamee 3a0aHHOU  3A8UCUMOCIU 8 OUANA30He MeMnepamyp
[-50 = +50] °C. Onpedenenvt pacnpedenenuss memnepamypvl 8 ONYXOAU U 6 PAZTUUHBIX CILOSAX
KOJICU 6 pedicumax oxaadicoenust u Hazpeea. Ilonyuennvle pezyibmamul 0aOm GO3MONCHOCHIb
onpeodensimy 2yOUHy NpoMep3aHus U npozpesa OUOI0SUYeCKOU MKAHU, 8 YACMHOCMU ONYXOJU,
npu 3a0aHHOM memnepamypHom eozoelicmeuu. bubn. 59, puc. 6, mabn. 2.

KiaroueBble cioBa: TeMmMIepaTypHOE BO3ICHCTBHE, KOXKa YEJOBEKa, OIyXOJlb, MEJIAHOMA,
JMHAMHYECKHUIT PeXHUM, KOMITBIOTEPHOE MOCIHPOBAHHE.
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THERMOELECTRIC GENERATOR WITH A
PORTABLE STOVE

The paper presents the results of the development and experimental research of a thermoelectric
generator, which consists of a thermoelectric unit based on an army pot and a portable stove of
widespread use. The obtained results confirm the possibility of using a thermoelectric generator to
power mobile phone batteries and various gadgets. The achieved energy parameters significantly
outperform the closest existing analogues. The expediency of constructive revision of the selected
portable stove in terms of providing the possibility of using an open flame has been established.
The economical calculations of the device have determined the average cost of the TEG at $ 170.
Bibl.7, Fig. 7, Tabl. 2.

Key words: thermoelectric generator, physical model, portable stove.

Introduction

Portable power sources are now in active demand in places where there is no centralized grid.
Interest in such sources has grown in recent years due to the need to charge the electric batteries of
modern laptops and gadgets. Ukrainian soldiers in Eastern Ukraine are particularly interested in such
devices. Thermoelectric generators (TEGs) on solid fuel have serious advantages over generators
whose operation is based on other physical principles: photovoltaic, wind. They are more reliable,
easy to maintain, not afraid of shocks and vibrations, easily disguised in the field. With the help of
such devices, one can not only get electricity, but also cook and heat food, heat in winter.

The purpose of this work was to create and study a highly efficient portable thermoelectric
generator characterized by low weight and size parameters and economically accessible to a wide

range of consumers.

A brief overview of portable TEGs with solid fuel heat sources with analysis of the
achieved parameters and characteristics.

Scientists and engineers from many countries are actively working to create more efficient
thermoelectric portable generators, which would be characterized by lower weight and size
parameters, high enough efficiency and modern design.

The Biolite Basecamp [1] device can use fallen branches, dry wood chips, cones or other wood

as fuel.
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The power output to the USB port of this device is 5 W, the voltage is 5V. The weight of the
device is 8.16 kg. The cooking surface area is 50.5 cm?, the diameter of the device is 33 cm. The cost
of the generator is 301 US dollars.

The disadvantage of this design is the significant weight and low efficiency of thermoelectric
conversion. The ratio of electric power to the weight of the generator with the stove is 0.6.

The thermoelectric generator FireBee Power Tower [2] converts heat from any portable stove
into electricity for charging smartphones, tablets and other electronic gadgets.

The device can be used with various heat sources, it can achieve an electrical power of 10 W at
a voltage of 5V, but its disadvantage is that in addition to the heat of the stove, for its operation it
needs a regular replacement of the heated water with cool water. This creates an inconvenience in the
field and makes it much more difficult to use this device.

The thermoelectric generator [3] comprises thermoelectric generator modules, "hot" heat
exchangers, "cold" heat exchangers. “Hot" heat exchangers are immersed in the reservoir of a hot
geyser, and "cold" heat exchangers are buried in the "permafrost”" or immersed in a cold reservoir. The
thermoelectric generator works as follows. Hot "heat exchangers" are heated from the hot reservoir of
the geyser and supply heat to the thermoelectric generator modules, while "cold" heat exchangers
remove heat from the thermoelectric generator modules and are cooled in "permafrost” or in a cold
reservoir. Due to the temperature difference created by "hot" and "cold" heat exchangers,
thermoelectric modules generate electricity. Thus, for the operation of a thermoelectric generator,
natural sources of heating and cooling are used. This design solution in the actual operation of the
device requires the presence of natural sources of heat and cold. This fact makes impossible wide
application of such a device.

The tourist generator PowerSpot Mini Thermixc [4] realizes a stable output power of 7 W and
allows charging electronic devices in the appropriate time:

Mobile phone (1500 mAh) - 1 h 30 min
Smartphone (3000 mAh) - 3 h

iPhone 6 (1800 mAh) - 1 h 45 min
iPhone 7 (1969 mAh) -2 h

iPhone 7 plus (2900 mAh) - 2 h 50 min
iPad / tablet (6500 mAh) - 6 h 30 min
GoPro HER04 (1160 mAh) - 1 h 10 min

The developers declare a service life of 50.000 hours at operating temperatures of 150 °C - 400
°C. For operation, the device consumes about 50 g of liquefied gas. This circumstance makes regular
use of the generator in the field practically impossible.

The purpose of this work is to create and study a highly efficient portable thermoelectric
generator, which would have low weight and size and would be economically available to a wide
range of consumers.

Physical model of a TEG with a heat source

Fig. 1 shows a physical model of thermoelectric generator unit comprising a thermopile, heat
spreaders for heat supply and removal from the thermopile, a device for intensive heat removal and a
heat source — flat-parallel surface uniformly heated with flame.
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RS

Fig. 1. Physical model of thermoelectric generator unit:
1 — heated surface; 2 — hot heat spreader;
3 — thermopile; 4 — cold heat spreader,
5 — housing; 6 — thermopile cooling block.

Since the generator is built into a heated surface, the processes of heat exchange between a real
source of fuel combustion and this surface are not considered. The temperature of the heated surface is
assumed to be equal to the temperature of the hot TEG heat exchanger.

Thus, heat supply from the heated surface to the hot side of the thermopile and heat removal
from the thermopile cold junctions to the cold heat exchanger is carried out due to thermal
conductivity and is described by the equations [5]:

AnS

0, = ; (T, - Ty, n
AS

Q2:%(TX_Tm)’ﬂ 2)

m

where Az A, 1is thermal conductivity of material of the hot and cold heat conductors; 77, T, are
temperatures of the hot and cold heat conductors; 75, Tx is temperature of the hot and cold side of
thermopile, respectively.

Thermal power Q3 is removed from the cold heat conductor by free convection into the water
contained in the cooling block (pot capacity):

Q3:a(Tm_To)Sma 3)

where a(v) is the coefficient of convective heat transfer between the cold heat conductor and water in
the cooling block; T} is the temperature of the liquid in the cooling block.

The electric power generated by the thermopile is proportional to Q) and the efficiency of the
thermopile n:

P=Py; =0m, 4
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The main heat losses O occur on the thermopile through thermal insulation:

_AS;
L

o, (T =T5)» )
where A is the thermal conductivity of the insulating material; St is the surface area of the hot heat
conductor which is not occupied by the thermopile; L is the thickness of the insulating layer.

The heat balance equation for the selected model of the thermoelectric generator can be written
as:

1:P 2 45
{Q +0,+0 ©

0,=0,+0,

The solution of the system of equations (6) makes it possible to determine the main energy and
design parameters of the thermoelectric generator unit in particular and a complex unit with a portable
heater in general.

Optimization of TEG design

Optimization of the generator unit was preceded by an experiment to determine the
temperatures of the elements of the selected portable stove [6]. Fig. 2 presents the results of such

measurements.
390 380
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Fig.2. Results of measuring the temperatures of the heater walls (°C)
a) — front view, b) — rear view, c) — top view.

Optimization computer calculations, which took into account the experimental temperature
measurements, made it possible to determine the design parameters of the thermoelectric generator
unit which was designed to be placed on the cooking surface of a portable stove.

From the computer analysis it followed that thermoelectric generator unit based on a military
pot should contain two thermoelectric generator modules in its bottom facing the heat source. The
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Altec-1061 module is installed as the optimal thermoelectric module for certain temperature and
thermal conditions.

Calculation of energy characteristics of the TEG with a stove

The approximate calculated mass of firewood at one loading in the stove m = 60g = 0.06 kg.
When burning one load of firewood, the released energy E is:

E=G-m=750 (kl) 7)

where G=12.56 mlJ/kg is calorific value of firewood.
Thermal power Q absorbed by thermoelectric modules:

n=g—Q==110 (W) ®)

where P=5W is calculated electric power generated by modules, n=0.045 is the efficiency of
modules at the hot and cold side temperatures Ty = 300°C and T, = 100°C, respectively.
Operating time ¢ at one loading while minimizing heat losses:

Q=€—>t:g=2(h) 9)

Thermal power O consumed to heat water in the generator pot:
0, =0~ P=105(W) (10)
Time ¢ of heating water in the generator pot:

:C'm'(Tl_To)_)tzc'm'(YI_To)

t =1(h) (11)

QH

H

where ¢=4.22 kJ/kg-K is heat capacity of water;

m=11is the volume of water in the pot;

T1=100 °C is the final water heating temperature;

T>=20 °C is the initial temperature of water in the pot.
In the absence of heat loss, the operating time of the thermoelectric generator at one loading of fuel
can be approximately 2 hours.

Calculation of energy characteristics of the TEG with a stove

The approximate calculated mass of firewood at one loading in the stove m = 60g = 0.06 kg.
When burning one load of firewood, the released energy F is:

E=G-m=750 (k) (7)

where G=12.56 mJ / kg is calorific value of firewood.
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Thermal power Q absorbed by thermoelectric modules:

=L 5o0=Lotow) )
0 n

where P=5W is calculated electric power generated by modules, n=0.045 is the efficiency of
modules at the hot and cold side temperatures Tr = 300°C and T. = 100°C, respectively.
Operating time ¢ at one loading while minimizing heat losses:

Q=§—>t=§=2(h) 9)

Thermal power Oy consumed to heat water in the generator pot:
0,=0-P=105(W) (10)
Time ¢ of heating water in the generator pot:

:C'm'(n_To)_)[:C'm'(Tl_To)

o, ) 0,

=1(h) (11)

where ¢=4.22 kJ/kg-K is heat capacity of water;
m=11 is the volume of water in the pot;
T1=100 °C is the final water heating temperature;
T>=20 °C is the initial temperature of water in the pot.

In the absence of heat loss, the operating time of the thermoelectric generator at one loading of
fuel can be approximately 2 hours.

Description of TEG design

The design of a thermoelectric unit for work with a portable stove is shown schematically in
Fig. 3.

4<f T 6

Fig.3. Schematic of thermoelectric generator
unit.1 — thermopile; 2 — heat-conducting
plate; 3 — heat sink plate; 4 — army pot

8 7 with a lid; 5 — protective housing;
6 — electric output; 7 — electronic

5 voltage stabilization unit; 8 — electric

connecting cable.
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To protect the electrical terminals of the thermopile from direct flame and external mechanical
loads, the generator contains a protective housing 5, which ends with an electrical output 6. Using an
electric cable 8, the thermoelectric generator is connected to the electronic output voltage stabilization
unit 7. The appearance of the unit is shown in Fig. 4.

Fig. 4. Appearance of the thermoelectric unit

The Institute of Thermoelectricity of the National Academy of Sciences and the Ministry of
Education and Science of Ukraine has developed, researched and standardized a thermoelectric unit
for universal use with various heat sources and fuels. Table 1 shows the main parameters of the Altec -
8046 unit [7].

Table 1
Basic parameters of the Altec-8046 thermoelectric unit

1 | Electric power, W 5

2 | Electric voltage output, V 5.10

3 | Pot volume, | 1.3

4 | Overall dimensions, mm 170 x 170 x 100
5 | Mass, kg 1

Methods of experimental research

The purpose of research conducted at the Institute of Thermoelectricity was to determine the
energy characteristics of a thermoelectric army pot on a portable stove. The maximum electric power of
the generator was measured in the range of water temperatures 7, = (20-100) °C every 10°C from the
moment of ignition of the stove. The schematic of the experiment is shown in Fig. 5.
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Fig.5 Schematic of the experiment to study the energy characteristics of thermoelectric army pot.
1 — tourist stove; 2 — cooking surface; 3 — thermoelectric generator,
4 — thermoelectric generator modules; 5 — thermocouples,
6 — thermometer; 7 — vessel with melting ice;8 — millivoltmeter; 9 — voltmeter.

When studying the energy characteristics of the generator, at all stages of the experiment, the
fuel consumption was recorded to determine the obtained thermal power and the efficiency of
thermoelectric conversion.

Research results

The time dependences of the energy characteristics of the Altec-8046 thermoelectric unit with a
portable stove are presented in Fig. 6.

2.4

2,0

0 5 10 15 20 25 30 35 40 45 50

t, min

Fig. 6. Dependence of electromotive force E of thermoelectric modules on time
t. Vertical black lines indicate the moments of throwing fitel into the stove.
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In these studies, firewood was used as fuel. Firewood consumption g = 840 g / hour. Thermal
design power of the stove Q = 2.9 kW. For comparison, a study of a thermoelectric generator unit was
carried out on an open flame from dry alcohol. Fig. 7 shows the obtained dependence of the
electromotive force and the value of power on time.

The comparison of the obtained results showed the expediency of refining the portable stove,
which would allow operation of the thermoelectric unit with an open flame. This design solution can
improve the efficiency of TEG by a factor of ~ 1.6.

E. W

3,0 T
13w

25| ##* Peaal

2,0

1,5

1,0

0,5

0,0 = : - : ' —
0o 5 10 15 20 25 30

t, min
Fig. 7. Dependence of electromotive force on time in the variant of open flame

The consumption of dry alcohol g =420 g/ h. In this case, the thermal power of the stove was
Q =3.6 kW. The volume of water poured into the pot is 1 liter. The achieved efficiency values were
about 1% for a TEG with a portable stove. The ratio of the output power to the weight of the device
with a wood-fired stove is ~ 0.8, with an open flame - 1.3. These values are higher than those of the
closest analogues.

Economic calculations of the cost of the developed device were carried out. Table 2 presents the
cost of a single product of a thermoelectric generator with an army pot "Altec-8046" versus the batch
size.

Table 2

The cost of thermoelectric generator versus the batch size

Batch size, pcs. 1 10 100 1000

Cost, $ 190 178 163 150

Conclusions

1. A thermoelectric generator based on the Altec-8046 thermoelectric unit with a portable stove has
been developed.

2. Studies carried out on various fuels have shown the possibility of using the developed device for
power supply of modern means of communications and various gadgets.
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The achieved values of the output electric power with respect to the weight of the device

significantly outweigh the closest known analogues.

The expediency of constructive revision of the selected portable stove in terms of providing the

possibility of using an open flame has been established.

The energy efficiency of a TEG with a portable stove after its improvement can increase by a

factor of 1.6.

The economic calculations of the device have determined the average cost of the TEG as $170.
The authors express their sincere gratitude to the scientific supervisor, academician of the

NAS of Ukraine LI Anatychuk, for the idea of work and valuable advice in its implementation.
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YV pobomi HaeoOsmwcs pesyromamu  po3spoOKu mMa  eKCHEPUMEHMATbHO20 — OOCHIONCEHHS.
MepMOoeleKMPUUHO20 2eHepamopd, Wo CKIA0AEMbCA 3 MepMOeNeKmpuyHo20 010Ky Ha 0asi
apMmilicbKo20 Ka3aHKa ma HOpmMamueHoi niuku wupoko2o eukopucmanua. Ompumani pe3yromamu
RIOMBEPOHCYIOMb MONCIUBICTNG BUKOPUCHIAHHA MEPMOENTEKMPUYHO20 2eHepamopa O HCUBLEHHS
AKYMYIAMOPI6 MOOUIbHUX MeNeoHI6 MA PI3HOMAHIMHUX 2adxcemis. J{ocsieHymi eHnepeemuyti
napamempu Cymmeso nepesadicaiomsv HauOaudicyi ichyioui anaiozu. Bemanosneno ooyinvhicme
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MOHCIUBOCE BUKOPUCTNAHHS BIOKPUMO20 NOJYM 'S . EKOHOMINHI PO3PAXYHKU RPUCIMPOIO SUSHAYUULU
cepeonio eapmicme TEI na pisni 170 oonapie CLLA. bion. 7, puc. 7, mabn. 2.
Knrouosi cnosa: mepmoenexmpuunuii eenepamop, Qizuuna Mooens, nopmamueHa niuka.
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TEPMODJEKTPUYECKH T'EHEPATOP C
MMOPTATUBHOM IMEYBIO

B pabome npusodsmcsi pezyrbmamvl pazpabomru U IKCHEPUMEHMATbHOZ0 UCCAeO08AHUSL
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TOI na yposne 170 oonnapoe CLLUA. bubn. 7, puc. 7, maébn. 2.
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THE USE OF THERMOELECTRIC ENERGY
CONVERTERS TO REDUCE
THE INFLUENCE OF NATURAL AND
CLIMATIC FACTORS ON
THE TECHNICAL READINESS OF A VEHICLE

The article discusses the problem associated with the operation of a vehicle at low ambient
temperatures, substantiates the need for special measures to maintain the optimal thermal regime
of the battery. The analysis of the factors influencing the start of a cold engine is carried out. The
effect of low temperature of the storage battery on the energy performance of the electrical
starting system is shown. Computational studies of the proposed system for compensating the heat
losses of the storage battery during the maintenance of a vehicle at low temperatures by the
method of thermostating with the use of thermoelectric energy converters are carried out. Bibl. 14,

Fig. 4, Tabl. 3.
Key words: technical readiness, storage battery, thermoelectric generator, phase transition thermal

accumulator, electric heating elements.

Introduction

The car has become an integral part of modern life. However, its use raises a number of
problems primarily related to environmental pollution and low energy efficiency. Since the creation of
the car, there has been a problem associated with ensuring a reliable and trouble-free start of the cold
internal combustion engine (ICE) at low ambient temperatures. This problem is still relevant today.

The purpose of the work is to carry out computational studies of the system to ensure
compensating the heat losses of the storage battery by the method of thermoelectric stabilization of its
optimal temperature when a vehicle is kept out of the garage at low ambient temperatures.

Analysis of previous research

Review and analysis of literary sources related to the impact of natural and climatic factors on a
vehicle during operation, primarily in urban conditions, characterized by long periods of inactivity,
small movements, frequent and short stops and garage-free maintenance during the inter-shift period
allows one to determine precisely the ambient air temperature as the main factor that affects the
technical readiness of a vehicle.
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Low temperatures complicate the start of a cold engine and lead to deterioration of its operating
conditions, which generally reduces the technical readiness and use of the vehicle for its intended
purpose.

The technical readiness of a vehicle at low ambient temperatures is mainly determined by the
reliable start of a cold engine and the recovery time of its thermal regime. It is largely complicated as a
result of a decrease in the discharge characteristics of storage battery in the mode of starting the engine
due to an increase in the viscosity and resistance of the electrolyte, an increase in resistance to
cranking of the engine crankshaft and deterioration of the conditions for the formation of the fuel-air
mixture.

Mixing deteriorates due to a decrease in the intake temperature below the optimum, which leads
to a deterioration in fuel evaporation and a decrease in the temperature of the working fluid at the end
of the compression stroke. With a decrease in the ambient air temperature from 20 ° C to minus 30 °
C, the temperature at the end of the compression stroke decreases by 100 ... 210 ° C, while in diesel
engines there is a delay in the autoignition of fuel two to three times in time, which leads to a
deterioration of burning process. The viscosity of winter diesel fuel with a decrease in inlet air
temperature from +20 ° C to minus 30 ° C increases 15 times. The viscosity of gasoline when the inlet
temperature decreases from 0 © C to minus 30 ° C is one and half times higher, and evaporation is 50
percent lower.

As the temperature decreases, the viscosity of the oil in the engine lubrication system increases.
This leads to an increase in friction power losses in the conjugate parts of the cylinder-piston group
and as a consequence to a decrease in the cranking speed of the engine crankshaft.

The reliability of starting the internal combustion engine at low ambient temperatures is largely
determined by the performance of the battery. The battery performance is understood as the maximum
possible number of crankshaft rotations with a duration of 15 seconds each [1].

The decrease in the temperature of the electrolyte is accompanied by an increase in its viscosity
and internal resistance, which leads to a significant decrease in voltage at the terminals of the battery,
which reduces the power developed by the starter in the cold engine start mode. With a decrease in the
temperature of the electrolyte from + 30 ° C to minus 40 ° C, its resistivity increases 8 times [2].
According to the Research Institute of Starter Batteries, at a temperature of 0 ° C, the current
efficiency of batteries is 90%, and at minus 40 ° C - 20%. At an electrolyte temperature below minus
20 ° C, an intensive deterioration in the efficiency of charging batteries from the on-board network
was established. When charging the battery from a stationary device, the battery electrolyte is actively
boiling at a constant density. Because the energy supplied is almost completely spent on water
hydrolysis, batteries are practically inoperable at minus 30 ... 35 ° C [3].

A decrease in the battery capacity in the starting mode leads to a decrease in the starting
crankshaft rotation speed, and a decrease in voltage leads to a decrease in the torque developed by the
starter. Achieving the required starting speed of the crankshaft at low temperatures is difficult due to
an increase in the cranking resistance torque of the engine crankshaft. In the process of starting the
engine at low temperatures, the determining factor is the ratio of the moment of resistance of the
engine crankshaft and the torque developed by the starter.

In this connection, the main concern of ensuring the operability of the battery and, as a
consequence, of the technical readiness of a vehicle as a whole, should be the maintenance of the
optimal temperature of the battery. The easiest way to solve this problem is to slow down the
electrolyte cooling. For example, according to the Research Institute Avtoprilad uninsulated battery
6ST-132 is cooled from + 25 ° C to minus 30 ° C at a rate of 6.6 °C for one hour; and
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insulated — 1.4 ° C for one hour.

In practice, there are many ways to ensure the technical readiness of a vehicle at low
temperatures. However, most of them require the solution of complex design and technical problems
and, under operating conditions, turn out to be ineffective or quite energy consuming. Therefore, the
proposed work considers those that are based on the methods of storage battery thermal control
through use of secondary energy resources of the internal combustion engine, which arise in large
quantities during its operation.

Research results

With the rapid growth in the number of vehicles over the past decades, combined with the
tightening of standards for fuel consumption and emissions of harmful substances, the utilization of
thermal energy of exhaust gases as part of the secondary energy resources of a transport engine is
becoming a promising direction for solving the above problem. This allows the implementation of
energy-efficient technologies for road transport. Exhaust gases have a high thermal potential, take
about 30% of the fuel energy into the environment, not only wasting primary energy resources, but
also increasing the heat load on the environment.

Application of heat accumulators using phase transition heat-accumulating materials is an
effective and promising way of storing heat energy on board a vehicle. This method makes it possible
to provide a high density of accumulated energy with an isothermal nature of the accumulation process
and makes it possible to store accumulated thermal energy on board a vehicle for quite a long time.

In this regard, it seems promising to develop systems that would have the ability to convert the
thermal energy accumulated in phase transition heat accumulator into electrical energy. To solve this
problem, according to the authors, thermoelectric energy converters can be effectively used [4]. The
advantages of the latter are the absence of moving parts, silent operation, environmental friendliness,
versatility in terms of methods of supply and removal of thermal energy, potentially high
reliability [5, 6].

This article presents the results of computational studies of the thermoelectric system proposed
in [7,8], which provides the optimal thermal regime of the starter battery at the end of the operation of
the internal combustion engine during the maintenance of the vehicle at low ambient temperatures.

Thermoelectric generators (TEG), as autonomous direct current sources, received intensive
development after semiconductor thermopiles were taken as the basis for their design. Over the past
decades, there has been a constant improvement of semiconductor thermoelectric materials, which is
aimed primarily at increasing their thermoelectric figure of merit in order to increase the electricity
they produce and improve the efficiency [9].

Significant disadvantages of semiconductor TEGs are their fragility, high cost and complexity
of the design of an automobile thermoelectric generator (ATEG) to ensure efficient operation, due to
the need for an external source of cooling, which makes it possible to obtain the necessary (stable)
temperature gradient and the presence of an electronic converter, which allows maintaining the
necessary output voltage. The need for such a scheme is explained by the fact that the electromotive
force generated by ATEG is not constant, since the temperature difference constantly changes its value
in different operating modes of the transport ICE.

In the conditions of real operation of the vehicle, the ATEG, from the point of view of the
efficiency and stability of its thermoelectric properties, must have the necessary mechanical strength
and chemical resistance under the conditions of prolonged vibration and shock loads, with sharp drops
in the temperature, pressure, and humidity.
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Thus, it is fair to assume that in order to obtain electrical energy sufficient to power low-
power devices under conditions of a small temperature gradient, metal conductors are more suitable
for the manufacture of ATEG.

1 B
—=— \.\

Exhaust
gases ST — e e e e ] e
= —

Fig. 1. Thermoelectric system for utilization of thermal energy
of exhaust gases with phase transition heat accumulator:
1 — phase transition heat accumulator,
2 — layer of heat-resistant compound,
3 — thermoelectric generator,
4 — heat regulator, 5 — heating element.

Taking into account the above, the authors proposed a method for increasing the thermal
readiness of a vehicle, in particular, the electrical starting system, under low temperatures. The
implementation of this method and, as a consequence, the provision of the optimal thermal mode of
the storage battery, is possible due to the use of a device for compensating heat losses of storage
battery by thermostating with heating elements.

The heat capacity of the battery is quite high, so when you install it in a container with
insulated walls (thermocase), the rate of drop of the electrolyte temperature will be quite low. Heating
elements are added inside the thermocase. The built-in temperature regulator turns off heating on
reaching + 25 © C and turns it on again at + 15 ° C.

The operating principle of the proposed system is as follows (Fig. 2): after stopping the
internal combustion engine the storage battery naturally cools down (section I), upon reaching the
storage battery temperature 15 °C, electric heating elements are connected to ATEG to heat the storage
battery to 25 °C (section II), following which the heating elements are turned off. After reducing the
temperature of the storage battery to 15 °C (section III) — the process is repeated. Responsible for the
switching of electrical circuits is the electronic control unit that receives information from the
temperature sensor of the storage battery (the temperature sensor is installed on the negative terminal
of the storage battery).

The proposed technical solution makes it possible to generate electrical energy without any
additional energy transmitted to the system both the internal combustion engine is in operation and
when the vehicle is kept in open areas under low temperatures. Based on the results of previous
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experimental studies, the possibility of using metal TEGs for generating electrical energy for quite a
long time after the end of the ICE operating cycle was confirmed [7].
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Fig. 2. Operating principle of a device for compensating
heat losses of storage battery

Computational studies

Calculation of the amount of energy required for thermal stabilization of the 6CT-44A battery of
ZAZ Tavria class cars with a capacity of 44 A-h in the temperature range 15...25 °C.

The mass of the specified battery is 13.6 kg, of which the mass of the electrolyte is 3.6 kg. To
simplify the calculation, we assume that another mass — 10.0 kg falls on lead (the mass of the body of
the storage battery and separators is neglected). Some design parameters of the 6CT-44A battery are
shown in Table 1 [10].

Table 1

Some design parameters of the 6CT-44A storage battery

Overall dimensions, mm Mass, kg
length width height without electrolyte| with electrolyte
207 175 175 10 13,6

The amount of heat required to heat the battery (Q») is defined as the sum of the amount of heat
for heating the lead (Ops) and the amount of heat for heating the electrolyte (Ox):

QEABA= QEPbE+ QAEAAQs = Ops + Ok ()

The amount of heat is defined by the formula:
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where m is mass of heated substance, kg;
¢ is specific heat, J/kg-K;

At is temperature difference, K.

The values of specific heats of storage battery components are given in Table 2.

O =m-cydt,

The values of specific heats of storage battery components

Storage battery components ¢p, J/(kg-K)
Water H;0 4182
Sulphuric acid (100%) H>SO; 1380
Lead Pb 128

(@)

Table 2

The heat capacity of electrolyte with a density of 1.28 g/cm? was determined using the data

given in Table 3 [11].

The amount of distilled water and acid, required
to prepare 1 [ of electrolyte with a density of 1.28 g/cm’ (at 25 °C)

The required
electrolyte density,
g/em?

The amount of]
water, 1

The amount of sulphuric acid with a
density of 1.83 g/cm*

kg

1.28

0.781

0.285

0.523

Table 3
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Using the data in Table 1 and 3, we received the required amount of sulfuric acid with a
density of 1.83 g/ cm® - 1.88 kg; distilled water - 2.81 kg. Based on the obtained values and data of
Table 2 we calculated the specific heat of the electrolyte with a density of 1.28 g/cm® - 1.15 kJ/(kg-K).

Based on the obtained values and formulae 1, 2, we calculated the amount of heat required to
heat the 6ST-44A battery from 15 ° C to 25 ° C:

O»=10-10.0-128 + 10-3.6:1150 = 54 (kJ)

If the calculated thermal energy is converted into consumed electrical power, then we get
about 15 W - h.

In practice, it is impossible to achieve the full use of storage battery active materials involved
in current-forming process. Moreover, the electrolyte (height hs), which is located in the mud space
between prisms 5 and the electrolyte reserve (height h, in a battery with a sheet separator and height
ho+hs in a battery with an envelope separator), does not take part in current-generating process during
electrical starting of the internal combustion engine. In this connection, the paper proposes to limit the
heating area of storage battery (side and end surfaces with height h;) by the height of the electrode to
reduce the power of the electric heating element 7 (Fig. 3).

ha

ho+hg

jo—— _§

H
h1
H

"...l
h4

ha
-
“‘Lir
qilinnini

R [ (10

CAAEAL

a b

w
B
-

Fig. 3. Schematic of storage battery: [12]
a — conventional battery; b — battery with unattended envelope separators;
1 - plug; 2 — electrolyte level in a battery; 3 - electrode; 4 — envelope separator,
5 — mud space prisms; 6 — card separator, 7 — electric heating element;
H — battery height; h; — electrode height, h; — electrolyte reserve in a battery with
a sheet separator, hs — height of prisms; hy + hs — electrolyte reserve in
a battery with an envelope separator

Therefore, the value of the required electric power of the electric heating element can be much
lower than the calculated and with regard to the volume of electrolyte that does not participate in the
current-generating process it can be reduced by 40... 60%, which will make up to 9 W - h.

Calculation of thermoelectric generator.

Based on the analysis of possible electric heating materials for heating storage battery, the use
of carbon fiber material as an external electric heater of storage battery is proposed (Fig. 4).
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Fig. 4. Electric heating elements based on carbon fiber materials

The use of carbon fiber materials as heating elements helps provide:

* larger area with a uniform temperature distribution on the surface;

* high heat transfer rates;

* reliable operation for a long time;

* low cost of electricity consumption compared to counterparts about 30%;

* heating in 3s after power supply and the same fast cooling.

The technical characteristics of the proposed heating element are as follows:

* thickness: about 0.3 mm

* substrate size: about 110 * 70 mm

* heating temperature: 50...55 °C

* voltage: 3.7 ... 5.0V

e current: 1.85+ 0.05 A

» power output: 8.5+ 0.2 W

» resistance: 3 Ohm

Based on the technical characteristics of the heating element, we calculated a thermoelectric
generator based on chromel-copel (L) thermocouples to power an external electric heater of 6CT-44A
storage battery. As a heat source, a phase transition thermal accumulator was used, assuming its
average temperature in the zone of contact with TEG (#;) = 78.5 °C, the temperature of the cold
junction (z.) = 0 °C. The calculations used the method proposed in [13].

The purpose of the calculation is to determine the required number of series-connected L type
thermocouples to ensure the operation of the external electric heater of storage battery.

The required number K of thermocouples in TEG, each of which having internal resistance r
and thermoEMF ¢;, was calculated by the formula (3):

K=" 3)

gr— Ir

where U is voltage on the load, V;

e; is thermoEMF developed by thermocouple, V;
I is current flowing in the thermocouple circuit, A
r 1is internal resistance of thermocouple, Ohm.
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Current flowing in the thermocouple circuit was calculated by the formula (4):

[ =—"" )

r+ R

where R 1s load resistance, Ohm.
The internal resistance of thermocouple was calculated by the formula (5):

r="+4 = (5)

where p;, p; are the resistivities of materials of which thermocouples are made, Ohm-mm?/m;
[ is the length of thermocouple conductor (assumed to be equal for both conductors), m;
s1, s> are cross-sectional areas of thermocouple conductors, mm?.

According to [14], the thermoEMF developed by thermocouple of L type is on the average 4.1
mV. According to [14], the resistivity of chromel metal alloy was assumed to be 0.038 Ohmemm?*/'m
and the resistivity of copel alloy — 0.027 Ohmemm?/m, with the wire diameter 0.7 mm and the length
of both thermocouple conductors assumed to be 0.02 m.

Based on the results of calculating the cross-sectional area of the thermocouple conductors, we
obtained 0.38 mm?.

According to formula (5), the resistance of thermocouple was determined as » = 0.0034

Ohm. Formula (4) was used to calculate current flowing in thermocouple circuit, / = 0.0014 A,
formula (3) — to determine the required number of thermocouples in TEG, K = 1200 pcs.

Conclusions

1. Based on the results of the studies, a system was proposed for compensating the heat losses of the
battery during the maintenance of the vehicle at low temperatures by the thermostating method
using thermoelectric energy converters.

2. The proposed technical solution makes it possible to generate electrical energy, both when the
internal combustion engine is operating and when the vehicle is kept in open areas at low
temperatures, using a phase transition heat accumulator as a heat exchanger, which accumulates the
thermal energy of exhaust gases.

3. To power the external electric heater of a car battery, it is proposed to use a thermoelectric
generator on chromel-copel (L) thermocouples.

4. According to the calculation results, to ensure thermoelectric stabilization of the optimal
temperature of the 6ST-44A automobile battery, the required number of series-connected L type
thermocouples was determined, to ensure the operation of an external electric heater with a total
power of up to 9 W - about 1200 pieces.
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EFFECTIVENESS OF THERMOELECTRIC RECUPERATORS FOR
RATIONAL TEMPERATURES OF HEAT SOURCES

The paper presents the results of analysis of thermoelectric recuperators of waste heat for the
temperature range 100 -300°C of the heat carrier. Based on computer model, optimization of
sectional recuperators is carried out, the efficiency of each section and recuperator as a whole is
calculated. The specific cost and payback time of sectional generators is calculated. Conclusions
are made on the economic feasibility of using such recuperators. Bibl. 130, Fig. 9, Tabl. 1.

Key words: thermoelectric recuperator, waste heat, efficiency, power, specific cost.

Introduction

General characterization of the problem. Most types of equipment for technological processes
in industry, heat engines (turbines, internal combustion engines, etc.) generate a large amount of waste
heat during their operation. In so doing, more than half of this heat is not only not used in any way, but
also leads to negative consequences for the environment — to its thermal pollution [1 — 4]. In this case,
the majority of thermal waste (nearly 90 %) has temperature up to 300 °C (Fig. 1). This determines the
relevance of creation of waste heat recuperators for this temperature level.

2% 3%

= =500 "C

| 400-500 °C
W 300-400 *C
m 200-300 °C
m 100-200 °C

G6%

Fig. 1. Distribution of thermal waste sources by temperature range [6].
The most popular ways of thermal into electrical energy conversion are mechanical. Their
characteristics are shown in the table. As is seen from the table, mechanical methods are efficient at
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high temperatures. At low temperatures (up to 300°C) they considerably lose their effectiveness or do
not work altogether. Another disadvantage is the need to use bulky equipment (boilers, evaporators,
turbines). Under such circumstances, direct thermal into electrical energy conversion by means of
thermoelectricity can become a competitive mechanical method.

Table.

Mechanical methods of waste heat conversion into electrical energy [7- 11]

Ne Operating Eloctrical
t
Method Efficiency | temperatures eetrica tenergy Service life
cos
1. Rankine cycle 20-30 % >350°C 0.8-1.88/Wr 15 - 20 years
2. Kalina cycle ~15% 100 — 540 °C 1.2-1.8 $/Wt 20 - 30 years
3. | Organic Rankine cycle | ~8-15% | 100—590 °C 1.4-228%/W 20 - 30 years

Therefore, the purpose of the work is to establish general features that thermoelectric
recuperators must meet, which will ensure their rational use.

Unlike thermoelectric generators which use costly heat sources and for which the main criterion
of effectiveness is their efficiency, thermoelectric recuperators use waste heat. Therefore, to determine
their effectiveness, it is necessary to apply other approaches, namely to establish their specific cost and
payback time [129].

Known thermoelectric recuperators of waste heat

Based on the analysis of literature data, it is possible to identify the most common areas of using
thermoelectric heat recuperators, namely industrial plants, internal combustion engines, thermal power
plants, boilers, gas turbines, and domestic heat. Waste heat recuperators [43-51] from such energy-
intensive industrial facilities as steel plants [26, 36-41, 54, 55], cement kilns [27-35, 38-40, 52, 54],
glass furnaces [38-40, 52], furnaces for annealing lime [38, 39, 52], furnaces for the production of
ethylene [38, 39], garbage recycling plants [104, 105], furnaces for smelting aluminum and other
metals [38, 39, 52] are under active investigation.

Thus, the scientists of KELK Ltd. and JFE Steel Corporation (Japan) [36, 37] jointly developed
and tested a thermoelectric recuperator using waste heat from a steel furnace. Its power is about 9 kW
with the efficiency of §%.

A thermoelectric recuperator using waste heat from a cement kiln was installed at the Awazu
plant of Komatsu (Japan). The power of such a recuperator is about 10 kW. The waste heat
recuperator from cement kilns [35] was also developed by scientists from Industrial Technology
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Research Institute (Taiwan) and Institute of Thermoelectricity (Ukraine). The feature of this generator
is its placement at some distance from the cement kiln which rotates, while it does not affect the
technological processes inside the kiln. The project for waste heat recovery from garbage recycling
plants using thermoelectricity was implemented jointly by Fujitaka (Japan) and Institute of
Thermoelectricity (Ukraine) [104, 105].

A large number of publications are devoted to heat recovery from internal combustion engines
of cars [28, 29, 52, 56 - 103] and motorcycles [28, 29]. However, it should be noted that the use of
thermoelectric recuperators in cars has a number of disadvantages [60, 70, 71]. The real power gain is
not significant enough. This leads to a search for more efficient applications of thermoelectricity. First
of all, it looks promising to recover heat from diesel engines of large ships (in addition to high power,
their advantage is the ability to remove heat from the thermoelectric converter to the surrounding
water), as well as large trucks and special equipment [75, 80, 82, 93, 97]. There are also interesting works
devoted to the use of thermoelectric recuperators in hybrid vehicles [71], where the energy generated
during the operation of an internal combustion engine is used to recharge the batteries of the vehicle.

Ref.[106] presents the results of studies on a thermoelectric heat recuperator, which uses waste heat
energy from power plants of Tokyo Electric Power. By joint efforts of the Komatsu Research Center and
KELK [107], such a thermoelectric recuperator was created and its experimental studies were carried out.

In [38, 39], studies of a thermoelectric recuperator, which uses waste heat from industrial
boilers, are presented. The efficiency of such a converter reaches 2%.

The Brno University of Technology (Czech Republic) has developed a thermoelectric
recuperator for recovery of waste heat from a boiler, which uses biomass as a fuel [108].

The topic of heat recovery from gas turbines is discussed in [23, 110]. The exhaust gases from
the turbine of pumping stations on gas mains were used as a source of thermal energy.

Refs. [111-115] present the results of development of a thermoelectric recuperator of heat from
the combustion of biomass in a household kitchen stove. The temperature difference on thermoelectric
modules is created on the one hand by flame, and on the other — by water tank.

One of the applications of thermoelectricity for waste heat recovery is a recuperator that uses
waste heat from the biomass drying process [116]. The power generated by it is used to power the fans
that circulate hot air in such a system.

Toshiba has developed a thermoelectric recuperator for an electric transformer [111].

Miniature thermoelectric recuperators used to power low-power equipment and sensors on board the
aircraft are considered in [117-122]. Such devices are mounted under the wing of the aircraft and use the
hot heat of the turbine.

It should be noted that heat recovery from stationary industrial plants (especially at temperatures
below 600 K) is of great interest for thermoelectricity, since it allows one to fully realize its
advantages. Estimates show that in the United States alone, about 3.300 TJ of energy are released
annually from thousands of industrial processes [38, 53], some of which can be returned to active
balance by direct thermoelectric energy conversion. Moreover, thermoelectric recuperators can be
used not only to increase the overall efficiency of energy conversion, but also to provide backup
power to the most critical units of industrial installations, which can significantly increase their
reliability [23-25].

Determination of general properties of thermoelectric recuperators

Physical model of a thermoelectric sectional heat recuperator is shown in Fig.2.
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Fig. 2. Physical model of thermoelectric sectional heat recuperator:
1 — hot heat exchanger, 2 — thermopiles
3 — cold heat exchanger 4 — matched electrical load of the section.

Each section of the recuperator consists of hot heat exchanger (1), thermopile (2) with thermal

resistance R and efficiency n(7},,T,); cold heat exchanger (3) with temperature 7, . Thermopiles of

each recuperator section are loaded on matched electrical load R (4). Hot gas input flow has

temperature 7, and thermal power Q! . Hot gas gives part of heat Q' (x) at temperature 7, (x) to

hot
the hot heat exchanger. At the recuperator outlet the gas flow has temperature 7, and thermal
power O . From the hot heat exchanger heat is passed to the thermopile, heating its hot side to

temperature 7}, (x) . To calculate maximum possible recuperator power, we will ignore thermal losses.

For the optimization of TEG it is necessary to find the distribution of temperatures and heat flows in
thermopiles of each section. Such a calculation for this model was made through use of numerical
computer methods.

To calculate the electrical power of TEG, we use the equation of energy balance in the form

W= ZU( 0 (x) — <’>(x))dx]. (1)

The necessary temperatures and heat flows are found from thermal conductivity equation
~V(k(T)VT)=0,, (2)
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where k. is effective thermal conductivity of thermopile, O, is the Joule heat which is released in the

bulk of the thermopile.
The boundary conditions for (2) will be given by

Zt(l) — Zl’ Zl(i+l) — 1(_7;([(1')’ ;;H(N) — It;ut , (3)
0 () =(T () =T (x))/ R, 4)
() =(T, (x)=T"(x))/ RS, (%)

The set of relations (1) - (5) makes it possible to determine the distribution of temperatures and
heat flows in each of the sections

To restrict the hot temperature of the module, the thermal resistance between the hot heat
exchanger and the thermoelectric module is determined from equation (4).

The power of each section and total efficiency of TEG can be found from equations

W =[O (T (x), T, )dx, (6)
1 &,
Nree :ﬁZWU) . (7)
H =l

The system of equations (1) - (5) was solved by numerical methods on a two-dimensional mesh
of finite elements.

To calculate the efficiency of the thermoelectric recuperator, thermoelectric materials based on
Bi-Te were selected which are one of the best in terms of quality in the considered temperature range
[127].

At the first stage, the optimization of the hot temperatures of the recuperator sections was
carried out (Fig. 3). Fig. 4 shows the relative number of thermoelectric modules of the same type in a
section to achieve optimal temperature distribution.
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Fig. 3. Dependence of the optimal hot temperature of the sections on the temperature of heat carrier.
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Fig. 4. Relative number of thermoelectric modules in a section to
achieve optimal temperature distribution.

The next step is to determine the dependence of the efficiency of thermoelectric modules
(Fig. 5) and the recuperator as a whole (Fig. 6) on the temperatures of the input heat carrier.
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Fig. 5. Dependence of the efficiency of modules of sections on
the temperature of inlet heat carrier.
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Fig. 6. Dependence of recuperator efficiency on the
temperature of inlet heat carrier.

As is evident from Fig. 6, the use of the second section of the thermoelectric heat recuperator
leads to an increase in efficiency by ~18%, and the third — only by 3%.

The percentage contribution of each section of thermoelectric heat recuperator to its total power
is shown in Fig. 8. As can be seen from the figure, the percentage contribution of the first section of
recuperator to total power is 85 — 90%, the second — 8 — 12%, the third — about 2%.

To assess the economic feasibility of using a thermoelectric recuperator, its specific cost was
calculated (Fig. 8), based on the results obtained in [128]. As can be seen from the figure, the use of
the third section in the considered temperature range is not economically feasible. The use of the
second section is also questionable.
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Fig. 7. Contribution of each section to total power of recuperator.
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Fig. 8. Specific cost of sectional recuperators.

For a better understanding of the economic efficiency of thermoelectric recuperators, we will
calculate their payback time, based on a comparison of the cost of their electrical energy with the cost
of industrial electrical energy. Fig. 9 shows the results of such calculations. For example, a

comparison was made with the average cost of electricity in Ukraine 0.12 $ / (kWh) (according to the
data of the company Ukrenergo [130]).
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Fig. 9. Payback time of sectional recuperators.

From the analysis of Fig. 9 it becomes clear that for the specified temperature range

(100 - 300 ° C) it is economically feasible to use only one section. A small gain in power when using
other sections does not cover material costs.
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Conclusions

1. The dependences of the optimal temperatures of the recuperator sections on the inlet gas
temperature in the range from 100 to 600 ° C are established. For the first section from 37 to 47
9C, the second - from 33 to 27 °C, the third - from 32 to 25 °C.

2. The number of thermoelectric converters in each section is determined to achieve the optimal
temperature distribution in the sections. For low inlet gas temperatures the number of
thermocouples in the sections is approximately the same. With a rise in temperature, the share of
thermocouples in the first section increases.

3. The specific cost of a thermoelectric recuperator and its payback time are calculated. It is shown
that the cost of each subsequent section is approximately an order of magnitude greater than the
cost of the previous one. Therefore, for the range of hot temperatures of the heat carrier 100-
300°C it is economically feasible to use only one section.
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