Вплив сегментування гілок на ефективність проникного термоелемента з матеріалів на основі Co-Sb
Ключові слова:
проникні термоелементи, сегментні матеріали, комп’ютерне проектування, матеріали на основі Co-SbАнотація
Приведено результати комп’ютерних досліджень впливу довжини сегментів гілок з матеріалів на основі Co-Sb на ефективність перетворення енергії. Визначено оптимальні режими роботи 2-сегментного термоелемента, за якої реалізуються максимальні значення ККД. Показано можливість покращення електричної потужності, що генерується при використанні 2-сегментних проникних термоелементів з матеріалів на основі Co-Sb, в 1.1-1.2 рази. Бібл. 14, рис. 2.
The results of computer research on the effect of leg segment length of Co-Sb-based material on energy conversion efficiency are presented. The optimal operating modes of a 2-segment thermoelement are determined whereby the maximum efficiency values are realized. The possibility of 1.1-1.2-fold increase of the electric power generated by using 2-segment permeable thermoelements of Co-Sb-based materials is demonstrated. Bibl. 14, Fig. 2.
Посилання
1. Cherkez R.G. (2014). Permeable generator thermoelements of Co-Sb based materials. J.Thermoelectricity, 3, 75-81.
2. Anatychuk L.I., Vikhor L.N. (2012). Thermoelectricity. Vol.4. Functionally-graded thermoelectric materials. Chernivtsi: Bukrek.
3. Uher C. (2006). Skutterudite-based thermoelectrics. In: Thermoelectrics Handbook. Macro to Nano. D.M.Rowe (Ed.). Boca-Raton: CRC Press.
4. Jung Jae-Yong, Park Kwan-Ho and Kim Il-Ho (2010). Thermoelectric and transport properties of In-filled and Ni-doped CoSb3 skutterudites. J. of the Korean Physical Society, 57 (4), 773-777.
5. Lamberton G.A., Bhattacharya S., Littleton R.T., Kaeser M.A., Tedstrom R.H., Tritt T.M., Yang J., and Nolas G.S. (2002). High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80, 598.
6. Anatychuk L.I., Cherkez R.G. (2003). Permeable thermoelement in electric energy generation mode. J.Thermoelectricity, 2, 35-46.
7. Anatychuk L.I., Cherkez R.G. (2010). Permeable segmented thermoelement in electric energy generation mode. J.Thermoelectricity, 3, 5-12.
8. Zhou A.J., Zhu T.J., Zhao X.B., et al. (2010). Improved thermoelectric performance of higher manganese silicides with Ge additions. J.Electronic Materials, 39(9), 2002.
9. Cherkez R.G., Maksimuk M.V., Fenyak P.P. (2013). Design of thermoelectric permeable structures based on Mg and Mn silicides. J.Thermoelectricity, 6, 62-70.
10. Bilinsky-Slotylo V.R., Vikhor L.M., Mykhailovsky V.Ya., Mocherniuk R.M., Semizorov O.F. (2013). Efficiency improvement of generator modules based on СоSb through use of segmented and multi-stage structures. J.Thermoelectricity, 3, 71-76.
11. Su X., Li H., Guo Q., Tang X., Zhang Q., Uher C. (2011). Structure and thermoelectric properties of Te- and Ge-doped skutterudites CoSb2.875-xGe0.125Tex. J.Electronic Materials, 40(5), 1286-1291.
12. Zhou Ch., Morelli D., Zhou X., Wang G., Uher C. (2011). Thermoelectric properties of p-type Yb-filled skutterudite YbxFeyCo4-ySb12. Intermetallics, 19(10), 390-1393.
13. Lobunets Yu.N. (1989). Metody raschiota i proektirovaniia termoelektricheskikh preobrazovatelei energii [Methods of calculation and design of thermoelectric power converters]. Kyiv: Naukova dumka [in Russian].
14. Kotyrlo G.K., Schegolev G.M. (1973), Teplovyiie skhemy termoelektricheskikh ustroistv [Heat diagrams of thermoelectric devices]. Kyiv: Naukova dumka [in Russian].