Computer Study of a Thermocouple with Developed Lateral Heat Transfer
DOI:
https://doi.org/10.63527/1607-8829-2025-1-37-47Keywords:
computer design, permeable structures, thermoelectric generator elements, efficiency, electric powerAbstract
The work is devoted to the study of thermoelectric generator elements with developed lateral heat exchange, which allows increasing their efficiency. Using the Comsol Multiphysics software environment, a three-dimensional model of a thermoelement with developed lateral heat exchange was created. The influence of the leg height and the velocity on the efficiency, the power generated by the thermoelement, the voltage and other characteristics was studied.
References
1. Burnete N. V., Mariasiu F., Depcik C., Barabas I., Moldovanu D. (2022). Review of thermoelectric generation for internal combustion engine waste heat recovery. Progress in Energy and Combustion Science, 91, 101009. https://doi.org/10.1016/j.pecs.2022.101009
2. Anatychuk L. I., Kuz R. V., Hwang J. D. (2012). The energy and economic parameters of Bi-Te based thermoelectric generator modules for waste heat recovery. Journal of Thermoelectricity, (4), 73–79.
3. Anatychuk L. I., Kuz R. V. (2016). Thermoelectric generator for trucks. Journal of Thermoelectricity, (3), 40–45.
4. Anatychuk, L., Prybyla, A., Korop, M., Kiziuk, Y., & Konstantynovych, I. (2024). Thermoelectric power sources using low-grade heat: Part 1. Journal of Thermoelectricity, (1-2), 90–96. https://doi.org/10.63527/1607-8829-2024-1-2-90-96
5. Anatychuk L. I., Kuz R. V., Rozver Y. Y. (2012). Efficiency of thermoelectric recuperators of the exhaust gas energy of internal combustion engines. AIP Conference Proceedings, 1449, 516–519.
6. Zavanelli D., Proschel A., Winograd J., Cherkez R., Snyder G. J. (2022). When power factor supersedes zT to determine power in a thermocouple. Journal of Applied Physics, 131(11). https://doi.org/10.1063/5.0075633
7. Cherkez R. G. (1998). On the possibility of improving thermoelectric cooling efficiency by changing the shape of thermopile legs. Journal of Thermoelectricity, (4), 41–46.
8. Anatychuk L. I., Cherkez R. G. (2003). On the properties of permeable thermoelements. In Proceedings of the International Conference on Thermoelectrics (ICT) (pp. 480–483).
9. Cherkez R. G. (2012). Energy characteristics of thermoelement with a developed lateral heat exchange. Journal of Thermoelectricity, (3), 59–68.
10. Eura T., Komine T., Hasegava Y., Takata A., Katsuki F., Katoh M., Nakao K., Utsumi K. Research and Development on a thermoelectric power generating system using Low-Calorie Exhaust Gas // 17-19 th ICT. - 1998-2000.
11. Eura T., Komine T., Hasegava Y., Takata A., Katsuki F., Katoh M., Nakao K., Utsumi K. Research and Development on a thermoelectric power generating system using Low-Calorie Exhaust Gas // 20th ICT. – 2001. - P. 409-412.
12. Yoshida H., Ohnaka I., Kaziura H., Yano T. Synthesis of porous thermoelectric devices // 17th ICT. – 1998.- P. 502-509.
13. Anatychuk L., Cherkez R., Porubanyi O., Zhukova, A. (2022). Effect of leg thickness and heat carrier velocity on the efficiency of a permeable generator thermoelement . Journal of Thermoelectricity, (1), 44–54.
14. Anatychuk L., Vykhor L., Kotsur M., Kuz R., Cherkez R. (2021). Comparative analysis of thermoelectric energy converters with permeable and solid thermoelements. Journal of Thermoelectricity, (2), 54–70.
15. Anatychuk , L., Cherkez, R., & Shcherbatyi, D. (2021). Computer simulation of a permeable generator thermoelement. Journal of Thermoelectricity, (4), 29–40.
16. COMSOL. (2022). COMSOL Multiphysics Reference Manual Version 6.2. https://doc.comsol.com/6.2/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
17. Anatychuk L. I., Havryliuk M. V., Lysko V. V. (2022). Equipment for determining thermoelectric properties of material by modified Harman's method. Journal of Thermoelectricity, (2), 67–74.
18. Kshevetsky O., Cherkez R. & Mazar , Y. (2023). Estimation of the efficiency of partial case of heat and mass transfer processes between heat pumps and moving substance: Part 4. Journal of Thermoelectricity, (4), 64–75.
19. Anatychuk, L.I., Kuz, R.V. and Rozver, Y.Y., 2012. Efficiency of thermoelectric recuperators of the exhaust gas energy of internal combustion engines. AIP Conference Proceedings, 1449, pp.516–519.
20. Zhao Y., Fan Y., Li W., Li Y., Ge M., Xie L. (2022). Experimental investigation of heat pipe thermoelectric generator. Energy Conversion and Management, 252, 115123. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0196890421012991
21. Muratçobanoğlu B., Akyürek E. F., Manay E. (2025). Experimental evaluation and optimization of the heat pipes integrated thermoelectric generator using response surface methodology. Applied Thermal Engineering, 258, Part A., 124599. Available at: https://www.sciencedirect.com/science/ article/abs/pii/S1359431124022671
22. Islamoğlu Y., Taymaz İ., Parmaksızoğlu C., Özsoy M., Aslan E. (2020). Design of heat pipe assisted thermoelectric generator and experimental investigation of the power performance. Sakarya University Journal of Science, 24(5), 872–881. Available at: https://dergipark.org.tr/tr/pub/saufenbilder/ issue/56422/699176
23. Raut R. S., Rathod S. V. (2017). Use of heat pipes and thermoelectric generator system for waste heat recovery and power generation. International Journal on Recent and Innovation Trends in Computing and Communication, 5(6), 539–542. Available at: https://ijritcc.org/download/conferences/ICIIIME_2017/ICIIIME_2017_Track/1497591597_16-06-2017.pdf
24. Anatychuk, L. I. and Vikhor, L. N. (2012). Thermoelectricity. Volume IV. Functionally graded thermoelectric materials. Institute of Thermoelectricity, Chernivtsi, Ukraine, 172 pp.
25. Lv H, Wang X-D, Wang T-H, Cheng C-H. (2016). Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section. Appl Energy, 164, 501–508.
26. Anatychuk L.I., Vikhor L.N. Computer design of thermoelectric functionally graded materials // Proc. of the Fourth International Symposium on FGM. – Tsukuba (Japan). - 1996. - P. 501-508.
27. Rowe, D.M. (2006). Thermoelectric Handbook: Macro to Nano. CRC Press, 1008 p.
28. Anatychuk, L. I. and Vikhor, L. N. (2012). Thermoelectricity. Volume IV. Functionally graded thermoelectric materials. Institute of Thermoelectricity, Chernivtsi, Ukraine, 172 pp.
29. Demchuk M.В., Luste O. J. Method of Assembling a Thermopile, Certificate of Authorship № 1145857, 1984.
30. L. I. Anatychuk, I. A. Konstantynovych. Patent of Ukraine № 93217, InCl H01L 35/00, Method for Manufacturing Thermoelectric Microthermopile; Application № u201403210; filed 31.03.14.