Енергетичні характеристики термоелектричних перетворювачів, що живляться від тепла тіла людини

Автор(и)

  • Р.Р. Кобилянський 1 Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2 Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна

Ключові слова:

термоелектричний мікрогенератор, тіло людини, енергетичні характеристики, стан спокою, фізичне навантаження, комп’ютерне моделювання

Анотація

У роботі наведено трьохвимірну фізичну модель, аналітичний опис та результати комп’ютерного моделювання термоелектричних перетворювачів, розміщених на поверхні тіла людини. Визначено оптимальні властивості термоелектричних перетворювачів, при яких досягаються максимальні значення електричної потужності Wmax та ККД у стані спокою та при фізичному навантаженні організму людини.

Посилання

1. Anatychuk L.I., Ivaschuk O.I., Kobylianskyi R.R., Postevka I.D., Bodiaka V.Yu., Gushul I.Ya. (2016). Thermoelectric device for measuring the temperature and heat flux density "ALTEC-10008". J. Thermoelectricity, 1, 76 – 84.

2. Gishchuk V.S., Kobylianskyi R.R., Cherkez R.G. (2014). Multi-channel device for measuring the temperature and density of heat flows. Scientific Bulletin of Chernivtsi University: Collected Papers. Physics. Electronics, 3 (1). Chernivtsi: Chernivtsi National University, 96 – 100.

3. Kobylianskyi R.R., Boichuk V.V. (2015). The use of thermoelectric heat meters in medical diagnostics. Scientific Bulletin of Chernivtsi University: Collected Papers. Physics. Electronics, 4 (1). Chernivtsi: Chernivtsi National University, 90 – 96.

4. Demchuk B.M., Kushneryk L.Ya. (2002). Thermoelectric sensors for orthopaedics. J. Thermoelectricity, 4, 80 – 85.

5. Ashcheulov А.А., Kushneryk L.Ya. (2004). Thermoelectric device for medical and biological express diagnostics. Tekhnologiia i Konstrurovaniie v Elektronnoi Apparature, 4, 38 – 39.

6. Ladyka R.B., Moskal D.N., Didukh V.D. (1992). Semiconductor heat meters in the diagnostics and treatment of joint diseases. Meditsinskaia Tekhnika, 6, 34 – 35.

7. Ladyka R.B., Dakaliuk O.N., Bulat L.P., Miagkota A.P. (1996). The use of semiconductor heat meters in the diagnostics and treatment. Meditsinskaiia Tekhnika, 6, 36 – 37.

8. Anatychuk L.I. (1979). Thermoelements and thermoelectric devices: Handbook. Kyiv: Naukova Dumka.

9. Anatychuk L.I., Lozinskii N.G., Mikitiuk P.D., Rozver Yu.Yu. (1983). Thermoelectric semiconductor heat meter. Instruments and Experimental Techniques, 5, 236.

10. Anatychuk L.I., Bulat L.P., Gutsal D.D., Miagkota А.P. (1989). Thermoelectric heat meter. Instruments and Experimental Techniques, 4, 248.

11. Gerashchenko О.А. (1971). Basics of thermometry. Kyiv: Naukova Dumka.

12. Jiang S.C., Ma N., Li H.J., Zhang X.X. (2002). Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns, 28, 713 – 717.

13. Cetingul M.P., Herman C. (2008). Identification of skin lesions from the transient thermal response using infrared imaging technique. IEEE, 1219 – 1222.

14. Ciesielski M., Mochnacki B., Szopa R. (2011). Numerical modeling of biological tissue heating. Admissible thermal dose. Scientific Research of the Institute of Mathematics and Computer Science, 1 (10), 11 – 20.

15. Filipoiu Florin, Bogdan Andrei Ioan, Carstea Iulia Maria (2010). Computer-aided analysis of the heat transfer in skin tissue. Proceedings of the 3rd WSEAS Int. Conference on Finite Differences – Finite Elements – Finite Volumes – Boundary Elements, 53 – 59.

16. Carstea Daniela, Carstea Ion, Carstea Iulia Maria (2011). Interdisciplinarity in computer-aided analysis of thermal therapies. WSEAS Transactions on Systems and Control, 6 (4), 115 – 124.

17. COMSOL Multiphysics User’s Guide (2010). COMSOLAB.

18. Anatychuk L.I., Kobylianskyi R.R. (2012). Study of the impact of thermoelectric heat meter on the determination of human heat release. J. Thermoelectricity, 4, 60 – 66.

19. Anatychuk L.I., Kobylianskyi R.R. (2012). 3D-model for determination of the impact of thermoelectric heat meter on the accuracy of measurement of human heat release. Scientific Bulletin of Chernivtsi University: Collected papers. Physics. Electronics, 2 (1). Chernivtsi: Chernivtsi National University, 15 – 20.

20. Anatychuk L.I., Kobylianskyi R.R. (2013). Computer simulation of thermoelectric heat meter readings under real operating conditions. J. Thermoelectricity, 1, 53 – 60.

21. Anatychuk L.I., Giba R.G., Kobylianskyi R.R. (2013). Some features of using medical heat meters in the study of local human heat emissions. J. Thermoelectricity, 2, 67 – 73.

22. Anatychuk L.I., Kobylianskyi R.R. (2013). On the accuracy of temperature determination by electronic medical thermometer with a thermoelectric power supply. J. Thermoelectricity, 5, 75 – 79.

23. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А. (2013). On the impact of thermoelectric power supply on the accuracy of temperature and heat flux measurement. J. Thermoelectricity, 6, 53 – 61.

24. Gischuk V.S., Kobylianskyi R.R., Cherkez R.G. (2014). Multi-channel device for measurement of temperature and heat flux density. Scientific Bulletin of Chernivtsi University: Collected papers. Physics. Electronics, 3 (1). Chernivtsi: Chernivtsi National University, 96 – 100.

25. Kobylianskyi R.R., Manyk O.M., Romaniuk S.B. (2014). Electronic medical thermometer with a thermoelectric power supply. Scientific Bulletin of Chernivtsi University: Collected papers. Physics. Electronics, 3(1). Chernivtsi: Chernivtsi National University, 105 – 111.

26. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych I.A. (2014). Thermoelectric power supply for electronic medical thermometer. Technology and Design in Electronic Equipment, 4, 28 – 32. DOI: 10.15222/TKEA2014.4.28.

27. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А. (2014). Calibration of thermoelectric heat flux sensors. Proc. of XV International scientific and practical conference “Modern Information and Electronic Technologies” May 26 30, 2014. – Vol. 2. – Odesa, Ukraine, p. 30 – 31.

28. Anatychuk L.I., Kobylianskyi R.R. (2014). Some features of the dynamic operating modes of thermal generator that uses human heat. J. Thermoelectricity, 3, 60 – 74.

29. Anatychuk L.I., Kobylianskyi R.R. (2014). On the increase in the efficiency of the thermogenerator when using human thermal energy in dynamic modes. J. Thermoelectricity, 4, 70 – 80.

30. Anatychuk L.I., Kobylianskyi R.R. (2014). Electronic medical thermometer with thermoelectric power supply. Materials Today: Proceedings 2 (2015) 849 – 857. – 12th European Conference on Thermoelectricity (ECT-2014); Published by Elsevier Ltd. ISSN: 2214-7853 (doi: 10.1016/j.matpr.2015.05.109).

31. Anatychuk L.I., Ivaschuk О.І., Kobylianskyi R.R., Postevka I.D., Bodiaka V.Yu. Gushul I.Ya. (2016). Thermoelectric device for measurement of temperature and heat flux density "ALTEC-10008". J. Thermoelectricity, 1, 76 – 84.

32. Kobylianskyi R.R. (2016). Computer simulation of readings of a thermoelectric sensor of medical purposes. J. Thermoelectricity, 4, 69 – 77.

33. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А., Lysko V.V., Pugantseva O.V., Rozver Yu.Yu., Tiumentsev V.A. (2016). Calibration bench for thermoelectric heat flux converters. J. Thermoelectricity, 5, 71 – 79.

34. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А., Kuz R.V., Manyk O.M., Nitsovych O.V., Cherkez R.G. (2016). Technology of manufacturing thermoelectric microthermopiles. J. Thermoelectricity, 6, 49 – 54.

35. Anatychuk L.I., Kobylianskyi R.R., Kadeniuk T.Ya. (2017). Computer simulation of local thermal impact on human skin. J. Thermoelectricity, 1, 69 – 79.

36. Anatychuk L.I., Razinkov V.V., Bukharaieva N.R., Kobylianskyi R.R. (2017). Thermoelectric bracelet. J. Thermoelectricity, 2, 58 – 72.

37. Anatychuk L.I., Luste O.J, Kobylianskyi R.R. (2017). Information-energy theory of thermoelectric sensors of temperature and heat flux of medical purpose. J. Thermoelectricity, 4, 5 – 20.

38. Anatychuk L.I., Todurov B.M., Kobylianskyi R.R., Dzhal S.A. (2019). On the use of thermoelectric microgenerators for power supply to pacemakers. J. Thermoelectricity, 5, 60 – 88.

39. Yuryk, O., Anatychuk, L., Kobylianskyi, R., Yuryk, N. (2023). Measurement of heat flux density as a new method of diagnosing neurological diseases. Modern methods of diagnosing diseases. Kharkiv: PC Technology Center, 31 – 68. doi: https://doi.org/10.15587/978-617-7319-65-7.ch2

##submission.downloads##

Номер

Розділ

Термоелектричні вироби

Статті цього автора (авторів), які найбільше читають

<< < 1 2 

Схожі статті

1 2 3 4 5 6 7 8 9 10 > >> 

Ви також можете розпочати розширений пошук схожих статей для цієї статті.