Energy characteristics of thermoelectric converters powered by human body heat

Authors

  • R.R. Kobylianskyi 1Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine; 2 Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi str., Chernivtsi, 58000, Ukraine

Keywords:

human body, energy characteristics, resting state, physical stress, computer simulation

Abstract

The paper presents a three-dimensional physical model, analytical description and results of computer simulation of thermoelectric converters placed on the surface of the human body. The optimal properties of thermoelectric converters are determined, at which the maximum values ​​of electrical power Wmax and efficiency are achieved in the resting state and during physical stress of the human body.

References

1. Anatychuk L.I., Ivaschuk O.I., Kobylianskyi R.R., Postevka I.D., Bodiaka V.Yu., Gushul I.Ya. (2016). Thermoelectric device for measuring the temperature and heat flux density "ALTEC-10008". J. Thermoelectricity, 1, 76 – 84.

2. Gishchuk V.S., Kobylianskyi R.R., Cherkez R.G. (2014). Multi-channel device for measuring the temperature and density of heat flows. Scientific Bulletin of Chernivtsi University: Collected Papers. Physics. Electronics, 3 (1). Chernivtsi: Chernivtsi National University, 96 – 100.

3. Kobylianskyi R.R., Boichuk V.V. (2015). The use of thermoelectric heat meters in medical diagnostics. Scientific Bulletin of Chernivtsi University: Collected Papers. Physics. Electronics, 4 (1). Chernivtsi: Chernivtsi National University, 90 – 96.

4. Demchuk B.M., Kushneryk L.Ya. (2002). Thermoelectric sensors for orthopaedics. J. Thermoelectricity, 4, 80 – 85.

5. Ashcheulov А.А., Kushneryk L.Ya. (2004). Thermoelectric device for medical and biological express diagnostics. Tekhnologiia i Konstrurovaniie v Elektronnoi Apparature, 4, 38 – 39.

6. Ladyka R.B., Moskal D.N., Didukh V.D. (1992). Semiconductor heat meters in the diagnostics and treatment of joint diseases. Meditsinskaia Tekhnika, 6, 34 – 35.

7. Ladyka R.B., Dakaliuk O.N., Bulat L.P., Miagkota A.P. (1996). The use of semiconductor heat meters in the diagnostics and treatment. Meditsinskaiia Tekhnika, 6, 36 – 37.

8. Anatychuk L.I. (1979). Thermoelements and thermoelectric devices: Handbook. Kyiv: Naukova Dumka.

9. Anatychuk L.I., Lozinskii N.G., Mikitiuk P.D., Rozver Yu.Yu. (1983). Thermoelectric semiconductor heat meter. Instruments and Experimental Techniques, 5, 236.

10. Anatychuk L.I., Bulat L.P., Gutsal D.D., Miagkota А.P. (1989). Thermoelectric heat meter. Instruments and Experimental Techniques, 4, 248.

11. Gerashchenko О.А. (1971). Basics of thermometry. Kyiv: Naukova Dumka.

12. Jiang S.C., Ma N., Li H.J., Zhang X.X. (2002). Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns, 28, 713 – 717.

13. Cetingul M.P., Herman C. (2008). Identification of skin lesions from the transient thermal response using infrared imaging technique. IEEE, 1219 – 1222.

14. Ciesielski M., Mochnacki B., Szopa R. (2011). Numerical modeling of biological tissue heating. Admissible thermal dose. Scientific Research of the Institute of Mathematics and Computer Science, 1 (10), 11 – 20.

15. Filipoiu Florin, Bogdan Andrei Ioan, Carstea Iulia Maria (2010). Computer-aided analysis of the heat transfer in skin tissue. Proceedings of the 3rd WSEAS Int. Conference on Finite Differences – Finite Elements – Finite Volumes – Boundary Elements, 53 – 59.

16. Carstea Daniela, Carstea Ion, Carstea Iulia Maria (2011). Interdisciplinarity in computer-aided analysis of thermal therapies. WSEAS Transactions on Systems and Control, 6 (4), 115 – 124.

17. COMSOL Multiphysics User’s Guide (2010). COMSOLAB.

18. Anatychuk L.I., Kobylianskyi R.R. (2012). Study of the impact of thermoelectric heat meter on the determination of human heat release. J. Thermoelectricity, 4, 60 – 66.

19. Anatychuk L.I., Kobylianskyi R.R. (2012). 3D-model for determination of the impact of thermoelectric heat meter on the accuracy of measurement of human heat release. Scientific Bulletin of Chernivtsi University: Collected papers. Physics. Electronics, 2 (1). Chernivtsi: Chernivtsi National University, 15 – 20.

20. Anatychuk L.I., Kobylianskyi R.R. (2013). Computer simulation of thermoelectric heat meter readings under real operating conditions. J. Thermoelectricity, 1, 53 – 60.

21. Anatychuk L.I., Giba R.G., Kobylianskyi R.R. (2013). Some features of using medical heat meters in the study of local human heat emissions. J. Thermoelectricity, 2, 67 – 73.

22. Anatychuk L.I., Kobylianskyi R.R. (2013). On the accuracy of temperature determination by electronic medical thermometer with a thermoelectric power supply. J. Thermoelectricity, 5, 75 – 79.

23. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А. (2013). On the impact of thermoelectric power supply on the accuracy of temperature and heat flux measurement. J. Thermoelectricity, 6, 53 – 61.

24. Gischuk V.S., Kobylianskyi R.R., Cherkez R.G. (2014). Multi-channel device for measurement of temperature and heat flux density. Scientific Bulletin of Chernivtsi University: Collected papers. Physics. Electronics, 3 (1). Chernivtsi: Chernivtsi National University, 96 – 100.

25. Kobylianskyi R.R., Manyk O.M., Romaniuk S.B. (2014). Electronic medical thermometer with a thermoelectric power supply. Scientific Bulletin of Chernivtsi University: Collected papers. Physics. Electronics, 3(1). Chernivtsi: Chernivtsi National University, 105 – 111.

26. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych I.A. (2014). Thermoelectric power supply for electronic medical thermometer. Technology and Design in Electronic Equipment, 4, 28 – 32. DOI: 10.15222/TKEA2014.4.28.

27. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А. (2014). Calibration of thermoelectric heat flux sensors. Proc. of XV International scientific and practical conference “Modern Information and Electronic Technologies” May 26 30, 2014. – Vol. 2. – Odesa, Ukraine, p. 30 – 31.

28. Anatychuk L.I., Kobylianskyi R.R. (2014). Some features of the dynamic operating modes of thermal generator that uses human heat. J. Thermoelectricity, 3, 60 – 74.

29. Anatychuk L.I., Kobylianskyi R.R. (2014). On the increase in the efficiency of the thermogenerator when using human thermal energy in dynamic modes. J. Thermoelectricity, 4, 70 – 80.

30. Anatychuk L.I., Kobylianskyi R.R. (2014). Electronic medical thermometer with thermoelectric power supply. Materials Today: Proceedings 2 (2015) 849 – 857. – 12th European Conference on Thermoelectricity (ECT-2014); Published by Elsevier Ltd. ISSN: 2214-7853 (doi: 10.1016/j.matpr.2015.05.109).

31. Anatychuk L.I., Ivaschuk О.І., Kobylianskyi R.R., Postevka I.D., Bodiaka V.Yu. Gushul I.Ya. (2016). Thermoelectric device for measurement of temperature and heat flux density "ALTEC-10008". J. Thermoelectricity, 1, 76 – 84.

32. Kobylianskyi R.R. (2016). Computer simulation of readings of a thermoelectric sensor of medical purposes. J. Thermoelectricity, 4, 69 – 77.

33. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А., Lysko V.V., Pugantseva O.V., Rozver Yu.Yu., Tiumentsev V.A. (2016). Calibration bench for thermoelectric heat flux converters. J. Thermoelectricity, 5, 71 – 79.

34. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych І.А., Kuz R.V., Manyk O.M., Nitsovych O.V., Cherkez R.G. (2016). Technology of manufacturing thermoelectric microthermopiles. J. Thermoelectricity, 6, 49 – 54.

35. Anatychuk L.I., Kobylianskyi R.R., Kadeniuk T.Ya. (2017). Computer simulation of local thermal impact on human skin. J. Thermoelectricity, 1, 69 – 79.

36. Anatychuk L.I., Razinkov V.V., Bukharaieva N.R., Kobylianskyi R.R. (2017). Thermoelectric bracelet. J. Thermoelectricity, 2, 58 – 72.

37. Anatychuk L.I., Luste O.J, Kobylianskyi R.R. (2017). Information-energy theory of thermoelectric sensors of temperature and heat flux of medical purpose. J. Thermoelectricity, 4, 5 – 20.

38. Anatychuk L.I., Todurov B.M., Kobylianskyi R.R., Dzhal S.A. (2019). On the use of thermoelectric microgenerators for power supply to pacemakers. J. Thermoelectricity, 5, 60 – 88.

39. Yuryk, O., Anatychuk, L., Kobylianskyi, R., Yuryk, N. (2023). Measurement of heat flux density as a new method of diagnosing neurological diseases. Modern methods of diagnosing diseases. Kharkiv: PC Technology Center, 31 – 68. doi: https://doi.org/10.15587/978-617-7319-65-7.ch2

How to Cite

Kobylianskyi, R. (2022). Energy characteristics of thermoelectric converters powered by human body heat. Journal of Thermoelectricity, (3-4), 82–97. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/132

Issue

Section

Thermoelectric products

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.