Обґрунтування методу термічної дистиляції з термоелектричним тепловим насосом для тривалих космічних місій

Автор(и)

  • В.Г. Ріферт НТУ «КПІ» ім. І.Сікорського, вул. Політехнічна, 6, Київ, 03056, Україна
  • Л.І. Анатичук 1. Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2. Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна
  • А.С. Соломаха НТУ «КПІ» ім. І.Сікорського, вул. Політехнічна, 6, Київ, 03056, Україна
  • П.О. Барабаш НТУ «КПІ» ім. І.Сікорського, вул. Політехнічна, 6, Київ, 03056, Україна
  • В.І. Усенко НТУ «КПІ» ім. І.Сікорського, вул. Політехнічна, 6, Київ, 03056, Україна
  • В.Г. Петренко НТУ «КПІ» ім. І.Сікорського, вул. Політехнічна, 6, Київ, 03056, Україна

Ключові слова:

термоелектрика, тепловий насос, дистилятор

Анотація

У статті описані основні методи термічної дистиляції, які можна використовувати для довготривалих космічних місій з людьми. Показано їх переваги та недоліки, наведено основні відомості щодо характеристик роботи систем, а саме: продуктивності по дистиляту, питомої витрати енергії на одиницю маси одержуваного дистиляту і якості дистиляту при випарюванні (концентруванні) водного розчину NaCl, урини й сумішей – урини з конденсатом, урини з конденсатом і гігієнічною водою. Вказано на обмеження, що не дозволяють їх використовувати для польотів та можливі шляхи їх вирішення.

This article describes the main methods of thermal distillation that can be used for long-term space missions with humans. Their advantages and disadvantages are shown, the basic information on the characteristics of the systems, namely: productivity of the distillate, specific energy consumption per unit mass of the distillate and the quality of the distillate by evaporation (concentration) of aqueous NaCl solution, urine and mixtures - urine with condensate, with condensate and hygienic water. Restrictions that do not allow them to be used for flights and possible ways to solve them are indicated.

Посилання

1. Abney M. B., Perry J. L., Sanders G. B. (2018). A discussion of integrated life support and in situ resource utilization architectures for Mars surface mission. 48th International Conference on Environmental Systems Albuquerque, New Mexico, 8-12 July 2018, ICES-2018-23

2. Jones H. W. (2017). Developing reliable life support for Mars. 47th International Conference on Environmental Systems, 16-20 July 2017, Charleston, South Carolina. ICES-2017-84

3. McQuillan Jeff, Pickering Karen D., Anderson Molly, Carter Layne, Flynn Michael, Callahan Michael, Vega Leticia, Allada Rama and Yeh Jannivine (2010). Distillation technology down-selection for the exploration life support (ELS) water recovery systems element [Text].The 40th International Conference on Environmental Systems, 2010, AIAA 2010-6125.

4. Carter D. L. (2009). VCD ELS distillation down-select test final report [Text]. Final Report, submitted to Online Project Information System (OPIS) for the Exploration Life Support Office.

5. Gorensek Max B., Baer-Peckham David. Space station water recovery trade study – Phase change technology. SAE paper 881015

6. Thibaud-Erkey C., Fort J., and Edeen M. (2000). A new membrane for the thermoelectric integrated membrane evaporative subsystem (TIMES). SAE Technical Paper 2000-01-2385 1999-01-1990

7. Dehner G.F. (1984). TIMES regenerator redesign description Timothy D. Scull Hamilton Standard Space Systems International, Inc. Addendum development of a preprototype times wastewater recovery subsystem. Prepared under contract no. nas 9-15471.

8. Thibaud-Erkey Catherine and Hamilton James H.Fort 2000-01-2385 A new membrane for the thermoelectric integrated membrane evaporative subsystem (TIMES) Edeen Marybeth A. (1982). Sundstrand space systems international NASA-Johnson Space Center Water Recovery Technology, SAE Technical Paper 820849.

9. Vapor compression distillation module (Contracts NAS9-13714 $ NAS9-14234), Prepared by P. P. Nuccio, 1975

10. Carter L., Williamson J, Brown C.A., Bazley J., Gazda D., Schaezler R., Thomas F., Molina S. (2019). Status of ISS water management and recovery. 49th International Con- ference on Environmental Systems, 7-11 July 2019, Boston, Massachusetts. ICES-2019-36

11. Noble Larry D., Schubert Franz H., Pudoka Rick J., Miernik Janie H. (1990). Phase change water recovery for the space station freedom and future exploration missions. 20th lntersociety Conference on Environmental Systems. Williamsburg, Virginia, July 9-12, 1990. SAE Technical Paper 901294.

12. Carter L., Williamson J., Brown C.A., Bazley J., Gazda D., Schaezler R., Thomas Frank.(2018). Status of ISS water management and recovery. 48th International Conference on Environmental Systems. 8 - 12 July 2018, Albuquerque, New Mexico. ICES-2018-088.

13. Carter L., Williamson J., Brown C.A., Bazley J., Gazda D., Schaezler R., Thomas Frank (2017). Status of ISS water management and recovery. 47th International Conference on Environmental Systems, 17 – 20 July 2017, Charleston, South Carolina. ICES-2016-036

14. Tleimat B. (1982). Wiped-film rotating disc evaporator for water reuse.

15. Tleimat B., Tleimat M., Grant No. 14-34-0001-0537.Quinn G., Flynn M., Smith F. (2002). The development of the wiped-film rotating-disk evaporator for the reclamation of water at microgravity. SAE TECHNICAL PAPER SERIES. 2002-01-2397

16. Tleimat B.W., Tleimat M.C. (1996). Water recovery from and volume reduction of gray water using an energy efficient evaporator. Desalination, 107,111-119.

17. Raschetno-poiasnitelnaia zapiska k eskiznomu proektu tsentrobezhnogo termoelektricheskogo distilliatora [Calculation and explanatory note to the draft design of a centrifugal thermoelectric distiller], Kyiv, 1975. Access by link: https://drive.google.com/file/d/1Jab5d-FXBGdFRaofVGAFx77VcW9G5BLW /view?usp=

sharingRifert V., Barabash P., Goliad N. (1990). Methods and processes of thermal distillation of water solutions for closed water supply systems. The 20th Intersociety Conference on Environmental Systems, Williamsburg, July 1990. SAE Paper 901249.

18. Rifert V., Usenko V., Zolotukhin I., MacKnight A., Lubman A. (1999). Comparison of secondary water processors using distillation for space applications. SAE Paper 99-70466, 29th International Conference on Environmental Systems, Denver, July 1999.

19. Rifert V., Stricun A., Usenko V. (2000). Study of dynamic and extreme performances of multistage centrifugal distiller with the thermoelectric heat pump. SAE Technical Papers 2000. 30th International Conference on Environmental Systems; Toulouse; France; 10-13 July 2000.

20. Rifert V. G., Usenko V.I., Zolotukhin I.V., MacKnight A. and Lubman A. (2003). Cascaded distillation technology for water processing in space. SAE Paper 2003-01-2625. 34st International Conference on Environmental Systems. Orlando, July 2003.

21. Lubman A., MacKnight A., Rifert V., and Barabash P. (2007). Cascade distillation subsystem hardware development for verification testing. SAE International, 2007-01-3177, July 2007.

22. Samsonov N., Bobe L, Novikov V., Rifert V. and others (1994). Systems for water reclamation from humidity condensate and urine for space station. The 24th International society Conference on Environmental Systems, June, 1994. SAE Paper 941536.

23. Samsonov N.M., Bobe L.S, Novikov V., Rifert V.G., Barabash P.A et al. (1995). Development of urine processor distillation hardware for space stations. The 25th International Conference on Environmental Systems, San Diego, July 1995. SAE Paper 951605

24. Samsonov N.M., Bobe L.S, Novikov V., Rifert V.G., et al. (1997). Updated systems for water recovery from humidity condensate and urine for the International space station. SAE Paper 972559, the 27th International Conference on Environmental Systems, Nevada, July 1997.

25. Samsonov N.M., Bobe L.S, Novikov V., Rifert V.G., et al. (1999). Development and testing of a vacuum distillation subsystem for water reclamation from urine. SAE Paper 1999-01-1993, the 29th International Conference on Environmental Systems.

26. Rifert V.G., Anatychuk L.I., Barabash P.A., Usenko V.I., Strikun A.P., Prybyla A.V.(2017). Improvement of the distillation methods by using centrifugal forces for water recovery in space flight applications. J.Thermoelectricity, 1, 71-83.

27. Rifert Vladimir G., Barabash Petr A., Usenko Vladimir, Solomakha Andrii S., Anatychuk Lukyan I., Prybyla A.V. (2017). Improvement the cascade distillation system for long-term space flights. 68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017. IAC-17-A1.IP.25.

28. Rifert Vladimir G., Anatychuk Lukyan I., Solomakha Andrii S., Barabash Petr A., Usenko Vladimir, Prybyla A.V., Naymark Milena, Petrenko Valerii (2019). Upgrade the centrifugal multiple-effect distiller for deep space missions. 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. IAC-19-A1,IP,11,x54316.

29. A.S.Solomakha, L.I.Anatychuk, V.G.Rifert, P.A.Barabash, V.Usenko, V.Petrenko (2020). Thermal distillation system for deep space missions: rationale for the choice. 71st International Astronautical Congress (IAC) – The CyberSpace Edition, 12-14 October 2020. IAC-20- A1,VP,15,x61344. 7 pages.

30. Rifert, V.G., Anatychuk, L.I., Barabash, P.O., Solomakha A.S., Strykun A.P., Sereda, V.V., Prybyla, A.V. (2019). Evolution of centrifugal distillation system with a thermoelectric heat pump for space missions. J.Thermoelectricity, 3, 5 – 19.

31. Rifert V.G., Anatychuk L.I., Barabash P.O., Usenko V.I., Solomakha A.S., Petrenko V.G., Prybyla A.V., Sereda V.V. (2019). Comparative analysis of thermal distillation methods with heat pumps for long space flights. J.Thermoelectricity, 4, 5 – 18.

32. Jeff McQuillan, Karen D. Pickering, Molly Anderson, Layne Carter, Michael Flynn, Michael Callahan, Leticia Vega, Rama Allada and Jannivine Yeh (2010). Distillation technology downselection for the exploration life support (ELS) water recovery systems element. 40th International Conference on Environmental Systems, AIAA 2010-6125.

33. M. Callahan, A. Lubman, A. MacKnight, H. Thomas and K. Pickering (2008). Cascade distillation subsystem development testing. SAE International, 2008-01-2195.

34. M. Callahan, A. Lubman, and K. Pickering (2009). Cascade distillation subsystem development: progress toward a distillation comparison test. SAE International, 2009-01 -2401.

35. M. Callahan, V. Patel, and K. Pickering (2010). Cascade distillation subsystem development: early results from the exploration life support distillation technology comparison test. American Institute of Aeronautics and Astronautics, 2010-6149.

##submission.downloads##

Номер

Розділ

Загальні проблеми

Статті цього автора (авторів), які найбільше читають

1 2 3 4 5 6 > >> 

Схожі статті

<< < 1 2 

Ви також можете розпочати розширений пошук схожих статей для цієї статті.