Computer simulation of a thermoelectric device for controlling the temperature of irrigation fluid during ophthalmological operations

Authors

  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0002-4664-3162
  • O.S. Zadorozhnyi 1. Іnstitute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine”, Odesa, 49/51, French Boulevard, Ukraine
  • M.M. Umanets State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine”, Odesa, 49/51, French Boulevard, Ukraine
  • N.V. Pasechnikova State Institution “The Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine”, Odesa, Ukraine
  • Yu.Yu. Rozver 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0002-4830-2206
  • A.O. Babich 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine

Keywords:

thermoelectric cooling, irrigation fluid, surgery, ophthalmology

Abstract

A physical, mathematical and computer model of a thermoelectric device for controlling the temperature of irrigation fluid during ophthalmic operations has been created. Using computer simulation, the temperature distributions of the therapeutic fluid and inside the cooling unit have been obtained depending on the cooling capacity of the thermoelectric module, the flow rate of the therapeutic fluid and the length of the medical tube in which the cooled fluid circulates. The results of calculations and computer simulation are presented.

References

1. Iguchi Y., Asami T., Ueno S., Ushida H., Maruko R., Oiwa K., Terasaki H. (2014). Changes in vitreous temperature during intravitreal surgery. Invest. Ophthalmol. Vis. Sci., 55, 2344; https://doi.org/10.1167/iovs.13-13065 .

2. Anatychuk L., Pasyechnikova N., Naumenko V., Kobylianskyi R., Nazaretyan R., Zadorozhnyy O. (2021). Prospects of temperature management in vitreoretinal surgery Ther. Hypothermia Temp. Manag., 11(2), 117 https://doi.org/10.1089/ther.2020.0019 .

3. Zadorozhnyy O., Korol A., Naumenko V., Pasyechnikova N., Butenko L. (2022). Heat exchange in the human eye: a review. Journal of Ophthalmology (Ukraine), 6, 50; http://doi.org/10.31288/oftalmolzh202265058.

4. Anatychuk L., Zadorozhnyy O., Naumenko V., Maltsev E., Kobylianskyi R., Nazaretyan R., Umanets M., Kustryn T., Nasinnyk I., Korol A., Pasyechnikova N. (2023). Vitreoretinal surgery with temperature management: A preliminary study in rabbits. The. Hypothermia Temp. Manag., 13(3), 126 http://doi.org/10.1089/ther.2022.0044.

5. Mauro A., Massarotti N., Salahudeen M., Cuomo F., Costagliola C., Ambrosone L., Romano M. R. (2018). Design of a novel heating device for infusion fluids in vitrectomy, Appl. Therm. Eng., 128, 625 https://doi.org/10.1016/j.applthermaleng.2017.08. 027.

6. Romano M.R., Barachetti L., Ferrara M., Mauro A., Crepaldi L., Bronzo V., Franzo G., Ravasio G., Giudice C. (2024). Temperature control during pars plana vitrectomy, Graefes Arch. Clin. Exp. Ophthalmol; https://doi.org/10.1007/s00417-024-06631-6.

7. Nazaretian R., Zadorozhnyy O., Umanets M., Naumenko V., Pasyechnikova N. (2020). Effect of irrigation solution temperature on the duration of intraocular bleeding during vitrectomy (experimental study). J. Ophthalmology (Ukraine), 2, 60 (2020); https://doi.org/10.31288/oftalmolzh202026064.

8. Rinkoff J., Machemer R., Hida T., Chandler D. (1986). Temperature-dependent light damage to the retina, Am. J. Ophthalmol., 102(4), 452; https://doi.org/10.1016/0002-9394(86)90073-5.

9. Tamai K., Toumoto E., Majima A. (1997). Local hypothermia protects the retina from ischaemic injury in vitrectomy, Br. J. Ophthalmol., 81(9), 789; https://doi.org/10.1136/bjo.81.9.789.

10. Jabbour N.M., Schepens C.L., Buzney S.M. (1988). Local ocular hypothermia in experimental intraocular surgery, Ophthalmology, 95(12), 1687; https://doi.org/10.1016/s0161-6420(88)32956-8.

11. Anatychuk L.I., Vykhor L.M.., Kotsur M.P., Kobylianskyi R.R., Kadeniuk T.Ya. (2016). Optimal control of time dependence of cooling temperature in thermoelectric devices. J. Thermoelectricity, 5.5-11.

12. Anatychuk L, Vykhor L., Kotsur M., Kobylianskyi R., Kadeniuk T. (2018). Optimal control of time dependence of temperature in thermoelectric devices for medical purposes. International Journal of Thermophysics, 39:108. https://doi.org/10.1007/s10765-018-2430-z .

13. Anatychuk L.I., Pasyechnikova N.V., Kobylianskyi R.R., Prybyla A.V., Naumenko V.O., Zadorozhnyi O.S., Nazaretyan R.E., Mirnenko V.V. (2017). Computer simulation of thermal processes in human eye. J. Thermoelectricity, 5, 41 – 58.

14. Anatychuk L.I., Pasyechnikova N.V., Naumenko V.O., Zadorozhnyi O.S., Nazaretyan R.E., Havryliuk M.V., Tiumentsev V.A., KobylianskyiR.R. (2019). Thermoelectric device for hypothermia of human eye. J. Thermoelectricity, 3, 64 – 73.

15. Anatychuk L.I., Pasyechnikova N.V., Naumenko V.O., Zadorozhnyi O.S., Danyliuk S.L., Havryliuk M.V., Tiumentsev V.A., Kobylianskyi R.R. (2020). Thermoelectric device for contact cooling of human eye. Physics and Chemistry of the Solid State, 140 – 145 (DOI: https://doi.org/10.15330/pcss.21.1.140-145).

16. Anatychuk L.I., Pasyechnikova N.V., Naumenko V.O., Zadorozhnyi O.S., Nazaretyan R.E., Havryliuk M.V., Tiumentsev V.A., Kobylianskyi R.R. (2020). Thermoelectric device for non-contact cooling of human eyes. J, Thermoelectricity, 4, 77 89.

17. Wang Chunzhi, Jiao Hongzhe, Anatychuk Lukyan, Pasyechnikova Nataliya, Naumenko Volodymyr, Zadorozhnyy Oleg, Vykhor Lyudmyla, Kobylianskyi Roman, Fedoriv Roman, Kochan Orest (2022). Development of a temperature and heat flux measurement system based on microcontroller and its Application in ophthalmology. Measurement Science Review, 22(2), 73-79. https://www.measurement.sk/2022/msr-2022-0009.pdf DOI: 10.2478/msr-2022-0009.

18. COMSOL Multiphysics User’s Guide (2012) COMSOLAB. https://blogs.ethz.ch/ps_comsol/files/2020/05/COMSOLMultiphysicsUsersGuide.pdf

19. COMSOL Multiphysics Reference Manual // COMSOLAB. 2018. 622 p. https://doc.comsol.com/5.4/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf

How to Cite

Kobylianskyi, R., Zadorozhnyi, O., Umanets, M., Pasechnikova, N., Rozver, Y., & Babich, A. (2024). Computer simulation of a thermoelectric device for controlling the temperature of irrigation fluid during ophthalmological operations. Journal of Thermoelectricity, (1-2), 61–71. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/157

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.