Universal thermoelectric generator with heat removal by water tanks

Authors

  • L.I. Anatychuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0002-2521-7666
  • V.V. Lysko 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0001-7994-6795
  • I.A. Konstantynovych 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0001-6254-6904
  • M.V. Havryliuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0003-3207-2917

Keywords:

thermoelectric generator, thermoelectric modules, test, electric power

Abstract

The work describes the design of a universal thermoelectric generator that can operate from any heat source - heated flat surfaces of stoves, gas or multi-fuel tourist primus, open flame, etc. The electrical energy received from the generator with a power 20-40 W provides autonomous power supply for various low-power radio electronic equipment, portable radio stations, mobile communication systems, lighting, as well as charging universal mobile batteries - power banks. To remove heat from the cold side of thermoelectric modules, tanks with water are used, which can be used for domestic purposes. The results of bench and field experimental studies of the developed generator are presented. Bibl. 30, Figs. 10, Table. 1.

References

1. TEG-BS-5W-5V-1. Available at: https://www.thermonamic.com/pro_view.asp?id=887

2. TEG-BS-10W-5V-2. Available at: https://www.thermonamic.com/pro_view.asp?id=876

3. Biolite CampStove. Available at: https://www.bioliteenergy.com/products/campstove-complete-cook-kit

4. CN216524233U. Thermoelectric water kettle water level detection circuit. Published 13.05.2022.

5. CN105167597B. A kind of thermo-electric generation hot-water bottle. Published 02.01.2018.

6. CN209391675U. A kind of heating vessel. Published 17.09.2019.

7. CN208806757U. Thermo-electric generation wild cooker. Published 30.04.2019.

8. GB2605345A. Cooking vessel. Published 28.09.2022.

9. Montecucco, A., Siviter, J., & Knox, A. R. (2017). Combined heat and power system for stoves with thermoelectric generators. Applied Energy, 185(P2), 1336-1342. https://doi.org/10.1016/j.apenergy.2015.10.132

10. Żołądek, M., Papis, K., Kuś, J., Zając, M., Figaj, R., & Rudykh, K. (2020). The Use of Thermoelectric Generators With Home Stoves. E3S Web Conf., 173, 03005. https://doi.org/10.1051/e3sconf/202017303005

11. Wood stove Thermoelectric Generator Rabbit Ears. Available at: https://thermoelectric-generator.com/product/wood-stove-thermoelectric-generator-rabbit-ears/

12. 45-watt teg generator for wood stoves with air-cooling. Available at: https://www.tegmart.com/thermoelectric-generators/wood-stove-air-cooled-45w-teg

13. Thermoelectric Power Generator for fireplace heater. Available at: http://www.thermonamic.com/pro_view.asp?id=828

14. Rowe, D. M. (2012). Modules, Systems, and Applications in Thermoelectrics (1st ed.). CRC Press. https://doi.org/10.1201/b11892

15. Vikhor, L., & Kotsur, M. (2023). Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts. Energies, 16, 4082-1 - 22. https://doi.org/10.3390/en16104082

16. Anatychuk, L. I., Lysko, V. V., & Prybyla, A. V. (2022). Rational areas of using thermoelectric heat recuperators. Journal of Thermoelectricity, 3-4, 43–67.

17. Rybchakov, D. E. (2023). Use of Computer Simulation for Optimization of Technological Modes of Manufacturing Thermoelectric Materials Based on Bi-Te Obtained by Vertical Zone Melting Method. Journal of Thermoelectricity, 2, 81-86.

18. Anatychuk, L. I., & Korop, M. M. (2023). Application of Machine Learning to Predict the Properties of Bi2Te3-Based Thermoelectric Materials. Journal of Thermoelectricity, 2, 59-71.

19. Gorsky, P. V. (2023). Probability Theory of Degradation of Thermoelectric Energy Converters and Its Use to Determine the Reliability of Thermoelectric Materials. Journal of Thermoelectricity, 2,

50-58.

20. Lysko, V. V., & Tudoroi, P. F. (2019). Computer simulation of extrusion process of Bi2Te3-based tape thermoelectric materials. Journal of Thermoelectricity, 2, 58–65.

21. Mykhailovsky, V. Y., Lysko, V. V., Antoniuk, V. V., & Maksymuk, M. V. (2017). Research on thermoelements based on n-PbTe and p-TAGS materials for thermoelectric generator cascade module. Journal of Thermoelectricity, 3, 36–44.

22. Lysko, V. V., & Nitsovich, O. V. (2023). Computer Optimization of the Vertical Zone Melting Method for Manufacturing Flat Ingots of Thermoelectric Materials Based on Bi2Te3. Journal of Thermoelectricity, 4, 36-45.

23. Konstantynovych, I. A., Ivanochko, M. M., & Kadelnyk, K. O. (2024). Design of a portable universal thermoelectric generator. Journal of Thermoelectricity, 1-2, 78–89.

24. L.I. Anatychuk, A.V. Prybyla, M.M. Korop, Yu.I. Kiziuk, I.A. Konstantynovych. (2024) Thermoelectric power sources using low-grade heat (Part 1). Journal of Thermoelectricity, (1-2), 90–96.

25. Anatychuk, L. I., & Lysko, V. V. (2012). Investigation of the effect of radiation on the precision of thermal conductivity measurement by the absolute method. Journal of Thermoelectricity, 1, 65–73.

26. Anatychuk, L. I., & Lysko, V. V. (2012). Modified Harman's method. AIP Conference Proceedings, 1449, 373–376. https://doi.org/10.1063/1.4731574

27. Anatychuk, L. I., Havrylyuk, N. V., & Lysko, V. V. (2012). Methods and equipment for quality control of thermoelectric materials. Journal of Electronic Materials, 41(6), 1680–1685. https://doi.org/10.1007/s11664-012-1973-1

28. Anatychuk, L. I., & Lysko, V. V. (2021). Determination of the temperature dependences of thermoelectric parameters of materials used in generator thermoelectric modules with a rise in temperature difference. Journal of Thermoelectricity, 2, 71–78.

29. Anatychuk, L. I., Lysko, V. V., & Havryliuk, M. V. (2018). Ways for quality improvement in the measurement of thermoelectric material properties by the absolute method. Journal of Thermoelectricity, 2, 90–100.

30. Anatychuk, L. I., Lysko, V. V., Havryliuk, M. V., & Tiumentsev, V. A. (2018). Automation and computerization of measurements of thermoelectric parameters of materials. Journal of Thermoelectricity, 3, 80–88.

How to Cite

Anatychuk, L., Lysko, V., Konstantynovych, I., & Havryliuk, M. (2024). Universal thermoelectric generator with heat removal by water tanks. Journal of Thermoelectricity, (3), 74–85. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/167

Issue

Section

Thermoelectric products

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >> 

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.