Особливості структурних, енергетичних, кінетичних та магнітних характеристик термоелектричного матеріалу Ti1-xScxCoSb
Ключові слова:
електронна структура, електроопір, коефіцієнт термоЕРСАнотація
Досліджено кристалічну та електронну структури, кінетичні, енергетичні та магнітні характеристики термоелектричного матеріалу Ti1-xScxCoSb у діапазонах: Т = 80 – 400 К, х = 0.005 – 0.15.Встановлено механізми одночасного генерування структурних дефектів акцепторної та донорної природи. Показано, що структура базової сполуки TiCoSb є дефектною, в якій присутні дефекти донорної та акцепторної природи як результат розташування у тетраедричних пустотах додаткових атомів Со* та наявність вакансій у позиції 4а атомів Ті. Уведення до структури сполуки TiCoSb домішкових атомів Sс шляхом заміщення у позиції 4а атомів Ті генерує дефекти акцепторної природи, а співвідношення концентрацій наявних донорів та генерованих акцепторів визначає положення рівня Фермі εF, тип та механізми провідності Ti1-xScxCoSb. Бібл. 19, рис. 9.
The crystalline and electronic structures, electrokinetic, energy and magnetic characteristics of the Ti1-xScxCoSb thermoelectric material were investigated in the ranges T=80–400 K, x=0.005–0.15. Mechanisms of simultaneous generation of structural defects of the acceptor and donor nature were established. It was shown that the structure of TiCoSb basic compound is defective, comprising defects of the donor and acceptor nature as a result of location in the tetrahedral voids of additional Co* atoms and the presence of vacancies at the 4a position of Ti atoms. The introduction of impurity Sc atoms into TiCoSb compound by substitution at the 4a position of Ti atoms generates the acceptor defects, and the ratio of concentrations of available donors and generated acceptors determines the position of the Fermi level εF, type, and the mechanisms of conduction for Ti1-xScxCoSb. Bibl. 12, Fig. 8.
Посилання
1. Romaka L. P., Shelyapina M. G., Stadnyk Yu. V., Fruchart D.,Hlil E. K., Romaka V. A. (2006). Peculiarity of metal – insulator transition due to composition change in semiconducting
TiCo1-xNixSb solid solution. I. Electronic structure calculations.J. Alloys Compd., 414, 46–50.
2. Stadnyk Yu. V., Romaka V. A., Shelyapina M. G., Gorelenko Yu. K., Romaka L. P., Fruchart D., Tkachuk A. V., Chekurin V. F. (2006). Impurity band effecton TiCo1-xNixSb conduction. Donorimpurities. J. Alloys Compd., 421, 19–23.
3. Romaka V. A., Stadnyk Yu. V., Frushart D., Tobola J., Gorelenko Yu. K., Romaka L. P., Chekurin V. F., Horyn A. M. (2007). Features of doping the p-TiCoSb in termetallic semiconductor with a Cu donorimpurity. 1. Calculation of electron structure. Ukr. J. Phys., 52(№5), 453–457.
4. Romaka V. A., Stadnyk Yu. V., Frushart D., Tobola J., Gorelenko Yu. K., Romaka L. P., Chekurin V. F., Horyn A. M. (2007). Specific features of doping the p-TiCoSb in termetallic semiconductor with a Cu donorimpurity. 2. Eхperimental studies. Ukr. J. Phys., 52 (№7), 650–656.
5. Romaka V. A., Stadnyk Yu. V., Akselrud L. G., Romaka V. V., Frushart D., Rogl P., Davydov V. N., Gorelenko Yu. K. (2008). Mechanism of local am or phization of a heavily doped Ti1-xVxCoSb in termetallic semiconductor. Semiconductors, 42(№7), 753–760.
6. Romaka V. A., Romaka V. V., Stadnyk Yu. V. (2011). Intermetalichni napivprovidnyky: vlastyvosti ta zastosuvannia [Intermetallic semiconductors].Lviv: LvivskaPolitechnica [in Ukrainian].
7. Romaka V. V., Rogl P.F., Carlini R. and Fanciulli C. (2017).Prediction of the thermoelectric properties of half-Heuslerphases from the density functional theory. In Alloys and Intermetallic Compounds, Artini C. (Ed.). London–NY: Taylor & Francis Group.
8. Horyn A., Romaka V.A., Stadnyk Yu., Romaka L., RokomanukM., Krayovskyy V. (2019). Features of Electrical Conductivity Mechanisms of the Ti1-xMoxCoSb Solid Solution. XIV International Conference on Crystal Chemistry of Intermetallic Compounds, Collected Abstracts (Lviv, Ukraine, September 22–26, 2019).
9. Anatychuk L. I. (1979). Termoelementy i termoelektricheskiie ustroistva. Spravochnik [Thermoelements and thermoelectric devices. Handbook].Kyiv: Naukovadumka [in Russian].
10. Shklovskii B.I. and Efros A.L. (1979).Electronic properties ofdoped semiconductors.NY: Springer, 1984; Moscow:Nauka1979 [in Russian].
11. RomakaV.A., FrushartD., StadnykYu.V., Tobola J., GorelenkoYu.K.,ShelyapinaM.G., RomakaL.P., ChekurinV.F. (2006). A cоndition of maximum power characteristic to intermetallic semiconductors of the MgAgAs structure tupe. Semiconductors, 40(№ 11), 1289–1395.
12. Roisnel T., Rodriguez-Carvajal J. (2001). WinPLOTR: a Windows Tool for Powder Diffraction Patterns analysis, Mater. Sci. Forum, Proc. EPDIC7 378–381, 118–123.
13. Schruter M., Ebert H., Akai H., Entel P., Hoffmann E., Reddy G.G. (1995). First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys.Phys. Rev. B 52, 188–209.
14. Moruzzi V.L., Janak J.F., Williams A.R. (1978). Calculated electronic properties of metals (1978). NY:PergamonPress.
15. Romaka V.V., Romaka L.P., KrayovskyyV.Ya., StadnykYu.V. (2015). Stannides of rare earth and transition metals.Lviv: LvivskaPolytechnika [in Ukrainian].
16. Mott N.F., Davis E.A. (1979). Electron processes in non-crystalline materials.Oxford: Clarendon Press.
17. RomakaV.A.,FruchartD., HlilE.K., GladyshevskiiR.E., GignouxD., RomakaV.V., KuzhelB.S. andKrayovskiiR.V. (2010). Feature so fan in termetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals. Semiconductors, 44(№ 3), 293–302.
18. Stadnyk Yu., Romaka V. V.,Romaka L., Orovchik L., Horyn A. (2019). Synthesis, electrical transport, magnetic properties and electronic structure of Ti1-xScxCoSb semiconducting solid solution. J. Alloys Compd., 805, 840–846.