Про температурні залежності термоелектричних характеристик перехідного шару термоелектричний матеріал-метал без урахування явища перколяції
Ключові слова:
контакт термоелектричний матеріал – метал, приконтактний перехідний шар, тепловий контактний опір, термоЕРС, фактор потужності, безрозмірна термоелектрична ефективність, , температурні залежностіАнотація
Розрахунковим шляхом отримано основні співвідношення, які визначають температурні залежності термоелектричних характеристик перехідних контактних шарів термоелектричний матеріал-метал без урахування теорії протікання. Конкретні кількісні результати та графіки температурних залежностей електричного та теплового контактних опорів, термоЕРС, фактору потужності та безрозмірної термоелектричної ефективності наведено для контактної пари телурид вісмуту – нікель. Встановлено, що разі нерівномірного розподілу атомів металу в інтервалі температур 200 – 400 К, інтенсивності надходження атомів металу у перехідний шар, яка відповідає зміні розподілу атомів металу за товщиною перехідного шару від лінійного до квадратичного та інтервалі товщин перехідного шару від 20 до 150 мкм електричний контактний опір змінюється від 1.8·10-7 до 4.8·10-6 Ом·см2, тепловий контактний опір – від 0.022 до 0.35 К·см2/Вт, термоЕРС – від 155 до 235 мкВ/К, фактор потужності – від 1.6·10-4 до 2.9·10-4 Вт/(м·К2), безрозмірна термоелектрична ефективність – від 0.55 до 1.7. Бібл. 34, рис. 21.
The basic relationships are obtained by calculation, which determine the temperature dependences of thermoelectric characteristics of thermoelectric material-metal transient contact layers without regard to percolation theory. Specific quantitative results and plots of the temperature dependences of the electrical and thermal contact resistances, the thermoEMF, the power factor, and the dimensionless thermoelectric figure of merit are given for bismuth telluride – nickel contact pair. It has been established that with uneven distribution of metal atoms in the temperature range of 200 - 400 K, the intensity of metal atoms entering transient layer, which corresponds to a change in the distribution of metal atoms by the thickness of transient layer from linear to square and the thickness range of transient layer from 20 to 150 µm, the electrical contact resistance varies from 1.8 · 10-7 to 4.8 · 10-6 Оhm·сm2, the thermal contact resistance - from 0.022 to 0.35 K·сm2/W, the thermoEMF - from 155 to 235 μV/K, the power factor - from 1.6·10-4 до 2.9·10-4 W/(m·K2), the dimensionless thermoelectric figure of merit - from 0.55 to 1.7. Bibl. 34, Fig. 21.
Посилання
1. Aswal D.K., Basu R., Singh A. (2016). Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manag., 114, 50-67. http://refhub.elsevier.com/S2468-6069(18)30133-3/sref1
2. Anatychuk L.I., Kuz R.V. (2012). The energy and economic parameters of Bi-Te based thermoelectric generator modules for waster heat recovery. J.Thermoelectricity, 4, 75-82.
3. Drabkin I.A., Osvensky V.B., Sorokin A.I., Panchenko V.P., Narozhnaya О.Е. (2017). Contact resistance in composite thermoelectric legs. Semiconductors, 51(8), 1038-1040.
4. Anatychuk L.I. (2003). Termoelektrichestvo. Tom 2. Termoelektricheskiie preobrazovateli energii [Thermoelectricity. Vol.2. Thermoelectric power converters]. Kyiv, Chernivtsi: Institute of Thermoelectricity [in Russian].
5. Semenyuk V. (2001). Thermoelectric micro modules for spot cooling of high density heat sources. Proc. of 20th International Conference on Thermoelectrics, 391-396.
6. Semenyuk V.A. (2006). Thermoelectric cooling of electro-optic components. Thermoelectrics Handbook: Macro to Nano, 58-1 – 58-20. D.M. Rowe (Ed.). CRC Taylor&Francis.
7. Fleurial J.-P., Snyder G.J., Patel J., et al. (2001). Solid-state power generation and cooling microdevices for distributed system architectures. Proc of 20th International Conference on Thermoelectrics, 24-29.
8. Bottner Harald, Nurnus Joachim, Schubert Axel (2006). Miniaturized thermoelectric converters. Thermoelectrics Handbook, Macro to Nano. D.M. Rowe (Ed.). CRC Taylor&Francis, 46-1 – 46-18.
9. Crane N. B., Misra P., Murray Jr. J.L., Nolas G.S. (2009). Self-assembly for integration of microscale thermoelectric coolers. Journal of Electronic Materials, 38 (7), 1252-1256.
10. I-Yu Huang, Jr-Ching Linb, Kun-Dian She (2008). Development of low-cost micro-thermoelectric coolers utilizing MEMS technology. Sensors and Actuators, A 148, 176–185.
11. Navone C., Soulier M., Plissonnier M., Seiler A.L. (2010). Development of (Bi,Sb)2(Te,Se)3-based thermoelectric modules by a screen-printing process. Journal of Electronic Materials, 39 (9), 1755-1759.
12. Goncalves L.M., Couto C., Alpuim P., Correia J.H. (2008). Thermoelectric micro converters for cooling and energy-scavenging systems. J. Micromech. Microeng., 18, 064008, 1-5.
13. Misra P., Nagaraju J. (2004). Test facility for simultaneous measurement of electrical and thermal contact resistance. Rev. Sci. Instr., 75, 2625-2630 (doi 10.1063/1.1775316).
14. Maheshappa H.D., Nagaraju J., KrishnaMurthu N.V. (1998). A facility for electrical contact resistance measurement. Rev. Sci. Instr., 69, 534-1539 (doi 10.1063/1.1148810).
15. Deepak, Krishna H. (2007). Measurement of small specific contact resistance of metals with resistive semiconductors. J. El. Mat., 36, 598-605 (doi 10.1007/s11664-007-0091-y).
16. Gupta R.P., McCarty R., Sharp J. (2014). Practical contact resistance measurement method for bulk Bi2Te3 based thermoelectric devices. J. El. Mat., 43 (6), 1608-1612.
17. Kim Y., Yoon G., Park S.H. (2016). Direct contact resistance evaluation of thermoelectric legs. Experimental Mechanics, 56 (5), 861-869. https://doi.org/10.1007/s11340-016-0131-8-
18. Alieva T.D., Barkhalov B.Sh., Abdinov D.Sh. (1995). Struktura i elektricheskiie svoistva granits razdela kristallov Bi0.5Sb1.5Te3 i Bi2Te2.7Se3 s nekotorymi splavami [Structure and electrical properties of interfaces between Bi0.5Sb1.5Te3 and Bi2Te2.7Se3 crystals with certain alloys]. Neorganicheskiie Materialy – Inorganic Materials, 31 (2), 194-198.
19. Dzhamalov N.A., Barkhalov B.Sh., Salaiev E.Yu., Gasanov N.A., Abdinov D.Sh.(1983). Neorganicheskiie Materialy – Inorganic Materials, 19(4), 593-595.
20. Alieva T.D., Akhundova N.M., Dzhamalov N.A., et al. (1985). Reports of the Academy of Sciences of Azerbaijan SSR, 41(12), 18-20.
21. Kuznetsov G.D., Polystanskiy Y.G., Evseev V.A. (1995). The metallization of the thermoelement branches by ionic sputtering of the nickel and cobalt. Proc of the XIV International Conference on Thermoelectrics (St.Petersburg, June 27-30, 1995) (p.166-167).
22. Astakhov M.V., Bublik V.T., Karataiev V.V., et al. (2004). Vliianiie protsessa nikelirovaniia na strukturu i adhesionnyie svoistva poverkhnostnykh sloiov termoelektricheskogo materiala na osnove khalkogenidov Bi i Sb. [The influence of nickel plating process on the structure and adhesion properties of surface layers of thermoelectric material based on Bu and Sb charlcogenides]. In: ”Thermoelectrics and their Application” (Saint-Petersburg, 2004) (p.243-248).
23. Bublik V.T., Voronin A.I., Ponomarev V.F., Tabachkova N.Yu. (2012). Izmeneniie struktury prikontaknoi oblasti termoelektricheskikh materialov na osnove telluride vismuta pri povyshennykh temperaturakh [Change in the structure of near-contact area of thermoelectric materials based on bismuth telluride at elevated temperatures]. Izvestiia vysshykh uchebnykh zavedenii. Materaily Elektronnoi Tekhniki - News of Higher Educational Institutions. Materials of Electronic Technique, 2, 17-20 [in Russian].
24. Belonogov Е.А., Dybov V.A., Kostiuchenko A.V., et al. Kondensirovannyie sredy i mezhfaznyie granitsy [Condensed media and interphase boundaries], Vol.19, №4, p.479-488.
25. Gupta Rahul P., Xiong K., White J.B., Cho Kyeongjae, Alshareef H.N., Gnade B.E. (2010). Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization. Journal of the Electrochemical Society, 157 (6), H666-H670, 2010. DOI: 10.1149/1.3385154
26. Ngan Hoang Pham, Nader Farahi, Hasbuna Kamila, Aryan Sankhla, Sahar Ayachi, Eckhard Müller, Johannes de Boor (2019). Ni and Ag electrodes for magnesium silicide based thermoelectric generators. Materials Today Energy, 11 97e105. https://doi.org/10.1016/j.mtener.2018.10.016.
27. Nikirsa D.D. (1987). Fizicheskiie osobennosti mikrominiaturizatsii polyprovodnikovykh okhlazhdaiushchikh termoelementov [Physical features of microminiaturization of semiconductor cooling thermoelements]. Candidate’s thesis (Tech.sciences). Chernivtsi [in Russian].
28. Bartkowiak M., Mahan G.D. (2001). Heat and electricity transport through interfaces, in: Recent Trends in Thermoelectric Materials, vol. II, Semiconductors and Semimetals, vol. 70. New York: Academic Press.
29. Sze S.M. (1985). Semiconductor Devices - Physics and Technology, John Wiley & Sons.
30. Goldberg Yu.A. (1994). Ohmic contact metal-semiconductor АIIIBV: creation methods and properties. Semiconductors, 28(10), 1681-1698.
31. Da Silva L.W., Kaviany M. (2004). Microthermoelectric cooler: interfacial effects on thermal and electrical transport. International Journal of Heat and Mass Transfer, 47(10-11), 2417–2435.
32. Anatychuk L.I., Dugaev V.K., Litvinov V.I., Volkov V.L. (1994). Contact resistance between metal and thermoelectric material. J. Thermoelectricity, 1, 70-77.
33. Goltsman B.M., Kudinov I.A., Smirnov I.A. (1972). Poluprovodnikovyie termoelektricheskiie materaily na osnove Bi2Te3 [Semiconductor thermoelectric materials based on Bi2Te3]. Moscow: Nauka [in Russian].
34. Lifshits E.M., Pitaevskii L.P. (1979). Fizicheskaia kinetika [Physical kinetics]. Moscow: Nauka [in Russian].