On the use of thermoelectric microgenerators for powering cardiac pacemakers

Authors

  • L.I. Anatychuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • B.M. Todurov GU "Heart Institute of the Ministry of Health of Ukraine", str. Bratislava, 5A, Kyiv, 02660, Ukraine
  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • S.A. Dzhal 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine

Keywords:

cardiac pacemaker, power supply, thermoelectric microgenerator, cardiovascular diseases

Abstract

The paper describes the design and operation of modern pacemakers, as well as their classification by the mechanism of work and power supplies. A comparative analysis of power supplies is given and prospects for the use of thermoelectric microgenerators for powering pacemakers are determined. Bibl. 66, Fig. 15, Tabl. 8.

References

1. Benjamin Emelia J., Virani Salim S., Callaway Clifton W., et al. (2018). Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation, 137: e67–e492.

2. Terenda N.O. (2015). Smertnist vid sertsevo-sudynnykh zakhvoriuvan yak derzhavna problema [Mortality from cardiovascular diseases as a state problem]. Visnyk naukovykh doslidzhen- Herald of Scientific Research, 4, 1-13 [in Ukrainian].

3. Handziuk V.A. (2014). Analiz zakhvoriuvanosti na ishemichnu khvorobu sertsia v Ukraini [Analysis of the incidence of coronary heart disease in Ukraine]. Ukrainian Journal of Cardiology, 3, 45-52.

4. Chepelevska L.A., Liubinets O.V. (2009). Prohnozni tendentsii smertnosti naselennia Ukrainy [Predictive tendencies of mortality of the population of Ukraine]. Visnyk sotsialnoi hihieny ta okhorony zdorovia Ukrainy – Bulletin of Social Hygiene and Health Care Organization of Ukraine, 3,10–15 [in Ukrainian].

5. Strutinskaya L.T. (2008). Termoelektricheskiie mikrogeneratory. Sovremennoie sostoianiie i perspektivy ispolzovaniia [Thermoelectric microgenerators. Curent status and prospects of use]. Tekhnologiia i konstruirovaniie v elektronnoi apparature – Technology and Design in Electronic Equipment, 4, 5-13 [in Russian].

6. Anatychuk L.I. (1979). Termoelementy i termoelektricheskiie ustroistva: Spravochnik [Thermoelements and thermoelectric devices: Handbook]. Kyiv: Naukova dumka [in Russian].

7. Anatychuk L.I. (2003). Termoelektrichestvo. T.2. Termoelektricheskiie preobrazovateli energii [Thermoelectricity. Vol.2. Thermoelectric power converters]. Kyiv, Chernivtsi: Institute of Thermoelectricity [in Russian].

8. Application for utility model № u 2017 11815 (2017). Anatychuk L.I., Kobylianskyi R.R., Dzhal S.A. Cardiac pacemaker with a thermoelectric power supply [in Ukrainian].

9. Application for utility model № u 2017 11818 (2017). Anatychuk L.I., Kobylianskyi R.R., Dzhal S.A. Cardiac pacemaker with a combined power supply [in Ukrainian].

10. Ludwig A, Zong X, Hofmann F, Biel M. (1999). Structure and function of cardiac pacemaker channels. Cell Physiol Biochem, 4-5:179-86.PMCID: 10575196

11. https://www.futurity.org/tiny-pacemaker-1049422/

12. http://www.kardiodom.ru/articles/572.html.

13. Skundin A.M, Fateev S.A, Kulova T.L. Battery for cardiac pacemaker: an alternative to lithium iodine system. Moscow: Institute of Electrochemistry of RAS.

14. Julien C., Mauger A., Vijh A., et al. (2016). Lithium batteries. Science and Technology, 15. ISBN: 978-3-319-19107-2.

15. https://clinicalgate.com/engineering-and-construction-of-pacemaker-and-icd-leads-2/

16. Tracy C.M., Epstein A.E., Darbar D., et al. (2012) ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol., Dec 12.

17. Potpara Tatjana S., Lip Gregory Y.H., Larsen Torben B., et al. (2016). Stroke prevention strategies in patients with atrial fibrillation and heart valve abnormalities: perceptions of ‘valvular’ atrial fibrillation: results of the European Heart Rhythm Association Survey. Europace, 18, 1593 –1598.

18. Bongiorni Maria Gracia, Blomstrom-Lundqvist Carina, Pison Laurent, et al. (2014). Management of malfunctioning and recalled pacemaker and defibrillator leads: results of the European Heart Rhythm Association survey. Europace, 16, 674–1678.

19. Livenson A.R. (1981). Elektromeditsinskaia apparatura. [Electromedical equipment]. 5th ed. [in Russian].

20. http://www.eurolab.ua/encyclopedia/ambulance/48886/

21. Patent US 3057356A. (1962). Greatbatch Wilson. Medical cardiac pacemaker.

22. Patent US 5562715A. (1996). John J. Czura, Randolph H. Kricke. Cardiac pulse generator.

23. Aizawa Y, Kunitomi A, Nakajima K, Kashimura S, Katsumata Y, Nishiyama T, Kimura T, Nishiyama N, Tanimoto Y, Kohsaka S, Takatsuki S, Fukuda K. (2015). Risk factors for early replacement of cardiovascular implantable electronic devices. Int. J. Cardiol, 178, 99–101.

24. https://link.springer.com/chapter/10.1007%2F978-3-642-50209-5_11

25. Patent US 4056105. (1977). Richard J. Ravas. Pulse generator.

26. Patent US 3835864. (1974). Ned S.Rasor. Intra-cardiac stimulator.

27. Brignole Michele, Auricchio Angelo, Baron-Esquivias Gonzalo. (2013). ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. European Heart Journal, 34, 2281–2329.

28. Benkemoun H., Sacrez J., Lagrange P., et al. (2012). Optimizing pacemaker longevity with pacing mode and settings programming: results from a pacemaker multicenter registry. Pacing Clin Electrophysiology, 35(4), 403-8.

29. Hernandez Antonio, Lewalter Thorsten, Proclemer Alessandro (2014). Remote monitoring of cardiac implantable electronic devices in Europe: results of the European Heart Rhythm Association survey. Europace, 16, 129–132.

30. Maltsev Victor A., Yaniv Yael, Maltsev Anna V., et al. (2014). Modern perspectives on numerical modeling of cardiac pacemaker cell. Pharmacol Science Journal, 125(1), 6–38.

31. http://www.kardiodom.ru/hirurgia/375.html

32. Bock David C., Marschilok Amy C., Takeuchi Kenneth J., Tekeuchi Esther S. (2012). Batteries used to power implantable biomedical devices. Electrochim Acta. Published online 2012 Mar 23. PMCID: PMC3811938.

33. Abdulianov I.V., Vagizov I.I. (2013). Modern approaches to constant pacing. Practical Medicine, 3(71).

34. Sarma Mallela Venkateswara, Ilankumaran V., Srinivasa Rao N. (2004). Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol J., 4(4), 201–212. Published online 2004 Oct 1.PMCID: PMC1502062.

35. Todd Derick, Proclemer Alessandro, Bongiorni Maria Grazia, et al. (2015). How are arrhythmias detected by implanted cardiac devices managed in Europe? Results of the European Heart Rhythm Association Survey. Europace, 17, 1449–1453.

36. Lenarczyk Radoslaw, Potpara Tatjana S., Hauga Kristina H., et al. (2016). The use of wearable cardioverter-defibrillators in Europe: results of the European Heart Rhythm Association survey. Europace, 18, 146–150.

37. Abiri Parinaz, Abiri Ahmad, Sevag Packard Rene R., et al. (2017). Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Scientific reports 7, Article number:6180 (2017)

38. Patel, J. (2018). Wireless charging of implantable pacemaker’s battery. Journal of Biosensors and Bioelectronics, 9, 3 DOI: 10.4172/2155-6210.1000258

39. Amar Achraf Ben, Kouki Ammar B. and Cao Hung (2015). Power approaches for implantable medical devices. Sensors, 15, 28889–28914.

40. Badranova G.U., Gotovtsev P.M., Shapovalova А.А. (2014). Ustroistva elektrosnabzheniia dlia meditsinskikh implantov i materialy dlia ikh konstruktsii [Power supply devices for medical implants and materials for their construction]. Vestnik biotekhnologii i fiziko-kmicheskoi biologii imeni Yu.A.Ovchinnikova – Bulletin of Biotechnology and physico-chemical biology named after Yu.A.Ovchinnikov, 10, 4, 54-66 [in Russian].

41. www.prutchi.com/pdf/implantable/nuclear_pacemakers.pdf

42. https://www.orau.org/ptp/collection/Miscellaneous/pacemaker.htm Henry Sutanto (2017). Leadless cardiac pacemaker as a novel intervention modality for atrioventricular conduction disturbance in hypertopic c ardiomyopathy. Journal of Advanced Therapies and Medical Innovation Sciences, 2.

43. https://newatlas.com/nanostim-leadless-pacemaker/29443

44. https://www.medscape.com/viewarticle/827034

45. Leadless pacemaker devices. Prepared for the February 18, 2016 meeting of the Circulatory System Devices Advisory Panel Gaithersburg Hilton; Gaithersburg, MD.

46. Vivek Y. Reddy, M.D., Derek V. Exner, M.D., et al. (2015). Implantation of an entirely intracardiac leadless pacemaker. The New England Journal of Medicine. Published online on August 30, 2015 DOI: 10.1056/NEJMoa1507192.

47. Patent US20110208260A1. (2017). Peter M. Jacobson. Rate responsive leadless cardiac pacemaker.

48. http://www.implantable-device.com/2011/12/24/nanostims-leadless-pacemaker/

49. Bhatia Dinesh, Bairagi Sweeti, Goel Sanat, Jangra Manoj, et al. (2010). Pacemakers charging using body energy. Journal of Pharmacy and Bioallied Sciences, 2(1), 51–54. PMCID: PMC3146093.

50. Patent US 3943936 (1976). Ned S.Rasor. Self powered pacers and stimulators.

51. Sutanto Henry. (2017). Leadlesss cardiac pacemaker as a novel intervention modality for atrioventricular conduction disturbance in hypertrophic cardiomyopathy. Journal of Advanced Therapies and Medical Innovation Sciences, 2.

52. Norman John C., Molokhia Farouk A., Harmison Lowell T., et al. An implantable nuclear-fueled circulatory support system. Annsurgery, 0260-0062. 492-502.

53. Albert, H. M, Glass B. A., Pittman. B. (1969). Plutonium for pacemakers e. British Medical Journal, 22.11, 447.

54. Huffman Fred N., Migliore Joseph J., Robinson William J., Norman John C. (1974). Radioisotope powered cardiac pacemakers. Cardiovascular Diseases (now published as Texas Heart Institute Journal), ISSN 0093-3546), 1(1), 52-60.

55. Patent US 20100257871. (2010). Rama Venkatasubramanian. Thin film thermoelectric devices for power conversion and cooling.

56. Patent US 6470212 (2002). Koen J. Weijand. Body heat powered implantable medical device.

57. Patent US 4002497 (1977). Harol Brown. Thermoelectric batteries.

58. Kwi-Il Park, Sheng Xu, Ying Liu, et al. (2010). Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. American Chemical Society, Nano Lett., 2010, 10 (12), 4939–4943; DOI: 10.1021/nl102959k.

59. Dagdevirena Canan, Yanga Byung Duk, Su Yewang, et al. (2013). Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences of the United States, December 16, 2013, doi: 10.1073/pnas.1317233111.

60. Xi Chen, Xu Shiyou, Nan Yao and Yong Shi (2010). 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. American Chemical Society, May 25, 2010, Nano Lett., 10 (6), 2133–2137 DOI: 10.1021/nl100812k.

61. https://inhabitat.com/wild-new-nanoribbon-implant-uses-heartbeats-to-power-pacemakers/?variation=d

62. http://www.piezo.com/tech3faq.html#app7

63. Zurbuchen Adrian, Haeberlin Andreas, Bereuter Lukas (2010). The swiss approach for a hertbet-driven lead – and batteryless pacemaker. Heart Rhythm, My 25, 2010, Nano Lett., 10 (6), 2133–2137 DOI: 10.1021/nl100812k.

64. https://www.powerelectronics.com/energy-harvesting/energy-harvesting-poised-eliminate-pacemaker-battery

65. https://newatlas.com/wristwatch-pacemaker/33624/

66. Hannan Mahammad A., Mutashar Saad, Samad Salina A. (2014). Energy harvesting for the implantable biomedical devices: issues and challenges. Hannan et al. BioMedical Engineering OnLine, 4, 13:79, 1-23.

How to Cite

Anatychuk, L., Todurov, B., Kobylianskyi, R., & Dzhal, S. (2024). On the use of thermoelectric microgenerators for powering cardiac pacemakers. Journal of Thermoelectricity, (5), 63–88. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/114

Issue

Section

Thermoelectric products

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.