Computer simulation of the working toolof thermoelectric device for cryodestruction without taking into account phase transition
Keywords:
cryodestruction, working tool, temperature effect, human skin, dynamic mode, computer simulationAbstract
The paper presents the results of computer simulation of the working tool of thermoelectric device for cryodestruction without taking into account phase transition, as well as cyclic temperature effect on the human skin in dynamic mode. A physical model of the working tool, a three-dimensional computer model of biological tissue taking into account thermophysical processes, blood circulation, heat exchange, metabolic processes and phase transitions, is constructed. As an example, a case is considered when the working tool is on the skin surface, the temperature of which changes cyclically according to a given law in the temperature range [– 50 ÷ + 50] °C. Temperature distributions in different layers of the human skin in cooling and heating modes were determined. The obtained results make it possible to predict the depth of freezing and warming of biological tissue at a given temperature effect.
References
1. Anatychuk L.I. (2003). Termoelektrichestvo. T. 2. Termoelektricheskiie preobrazovatelu energii [Thermoelectricity. Vol. 2. Thermoelectric energy converters]. Kyiv, Chernivtsi: Naukova Dumka.
2. Moskalyk І.А., Manyk O.M. (2013). On the use of thermoelectric cooling in the practice of cryodestruction. J. Thermoelectricity, 6, 84 – 92.
3. Moskalyk І.А. (2015). On the use of thermoelectric devices in cryosurgery. Physics and Chemistry of the Solid State, 4, 742 – 746.
4. Anatychuk L.I., Denisenko О.І., Kobylianskyi R.R., Kadeniuk T.Ya. (2015). On the use of thermoelectric cooling in detrmatology and cosmetology. J. Thermoelectricity, 3, 57 – 71.
5. Kobylianskyi R.R., Moskalyk І.А. (2015) Computer simulation of local thermal effect on biological tissue. J. Thermoelectricity, 6, 57 – 65.
6. Kobylianskyi R.R., Kadeniuk T.Ya. (2016). On the prospects of using thermoelectriicty for the treatment of skin diseases with cold. Scientific bulletin of Chernivtsi University: collected papers. Physics. Electronics, 5 (1). Chernivtsi: Chernivtsi National University, 67 – 72.
7. Anatychuk L.I., Denisenko O.I., Kobylianskyi R.R., Kadeniuk T Ya., Perepichka M.P. (2017). Modern methods of cryotherapy in dermatological practice. Clinical and Experimental Pathology, XVІ, (59), 150 – 156.
8. Anatychuk L.I., Kobylianskyi R.R., Denisenko O.I., Shulenina O.V., Mykytiuk O.P. (2018). Results of clinical application of thermoelectric device for the treatment of skin diseases. J. Thermoelectricity, 3, 51 – 64.
9. Kobylianskyi R.R., Manyk O.M., Vyhonnyi V.Yu. (2018). On the use of thermoelectric cooling for cryodestruction in dermatology. J. Thermoelectricity, 6, 35 – 44.
10. Anatychuk L.I., Denysenko О.І., Kobylianskyi R.R., Stepanenko V.I., Svyryd S.G., Stepanenko R.L., Perepichka M.P. (2019). Thermoelectric device for treatment of skin diseases. J. Thermoelectricity, 4, 63 – 73.
11. Anatychuk L.I., Todurov B.M., Kobylianskyi R.R., Dzhal S.A. (2019). On the use of thermoelectric microgenerators for powering cardiac pacemakers. J. Thermoelectricity, 5, 63 – 88.
12. Anatychuk L.I., Vikhor L.M., Kotsur M.P., Kobylianskyi R.R., Kadenyuk T.Ya. (2016). Optimal control of time dependence of cooling temperature in thermoelectric devices. J. Thermoelectricity, 5, 5 – 11.
13. Anatychuk L.I., Kobylianskyi R.R., Kadenyuk T.Ya. (2017). Computer simulation of local thermal effect on human skin. J. Thermoelectricity, 1, 62 – 83.
14. Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadeniuk T.Ya. (2017). Computer simulation and optimization of the dynamic operating modes of thermoelectric device for treatment of skin diseases. J. Thermoelectricity, 2, 46 – 57.
15. Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadeniuk T.Ya., Zvarych O.V. (2017). Computer simulation and optimization of the dynamic operating modes of thermoelectric reflexotherapy device. J. Thermoelectricity, 3, 65 – 74.
16. Anatichuk L.I., Vykhor L.M., Kobylanskyi R.R., Kadenyuk T.Ya. (2017). Computer modeling and optimization of dynamic modes of operation of a thermoelectric device for cryodestruction. Solid state physics and chemistry, 18 (4), 455 – 459.
17. Anatychuk L., Vikhor L., Kotsur M., Kobylianskyi R., Kadeniuk T. (2018). Optimal control of time dependence of temperature in thermoelectric devices for medical purposes. International Journal of Thermophysics 39, 108. https://doi.org/10.1007/s10765-018-2430-z.
18. Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2019). Methodology for taking into account the phase transition in biological tissue in computer simulation of the cryodestruction process. J. Thermoelectricity, 1, 46 – 58.
19. Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2019). Computer simulation of human skin cryodestruction process in thermoeelctric cooling. J.Thermoelectricity, 2, 21 – 35.
20. Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2020). Computer simulation of cyclic temperature effect on the human skin. J. Thermoelectricity, 2, 44 – 61.
21. Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2020).Computer simulation of cyclic temperature effect on the oncological neoplasm of the human skin. J. Thermoelectricity, 3, 29 – 45.
22. Miller P., Metzner D. (1969). Cryosurgery for tumors of the head and neck. – Trns. Am.Ophthalmol. Otolaringol. Soc., 73 (2), 300 – 309.
23. D’Hont G. La cryotherapie en ORL (1974). Acta. Otorhinolaringol., 28 (2), 274 – 278.
24. Mazur P. (1968). Physical-chemical factors underlying cell injury in cryosurgical freezing. In:Cryosurgery ed. by R. W. Rand, A. P. Rinfret, H. Leden – Springfield, Illinois, U.S.A.1968 p. 32 – 51.
25. Gill W., Fraser I. (1968). A look at cryosurgery. Scot, Med, I., 3, 268 – 273.
26. Van Venrjy G. (1975). Freeze-etching: freezing velocity and crystal size at different size locations in samples. Cryobiology, 12 (1), 46 – 61.
27. Bause H. (2004). Kryotherapie lokalisierter klassischer, neues Verfahren mit Peltier-Elementen (– 32°C) Erfahrungsbericht Hamangiome. Monatsschr Kinderheilkd. 152, 16 – 22.
28. COMSOL Multiphysics User’s Guide (2010). COMSOLAB.
29. Jiang S.C., Ma N., Li H.J., Zhang X.X. (2002). Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns, 28, 713 – 717.
30. Cetingul M.P., Herman C. (2008). Identification of skin lesions from the transient thermal response using infrared imaging technique. IEEE, 1219 – 1222.
31. Ciesielski M., Mochnacki B., Szopa R. (2011). Numerical modeling of biological tissue heating. Admissible thermal dose. Scientific Research of the Institute of Mathematics and Computer Science, 1 (10), 11 – 20.
32. Filipoiu Florin, Ioan Bogdan Andrei, Carstea Iulia Maria (2010). Computer-aided analysis of the heat transfer in skin tissue. Proceedings of the 3rd WSEAS Int. Conference on Finite Differences – Finite Elements – Finite Volumes – Boundary Elements, 53 – 59.
33. Carstea Daniela, Carstea Ion, Carstea Iulia Maria. (2011). Interdisciplinarity in computer-aided analysis of thermal therapies. WSEAS Transactions on Systems and Control, 6 (4), 115 – 124.
34. Deng Z.S. Liu J. (2005). Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties. Cryobiology, 50, 183 192.
35. Han Liang Lim, Venmathi Gunasekaran (2011). Mathematical modeling of heat distribution during cryosurgery. https://isn.ucsd.edu/last/courses/beng221/problems/2011/project10.pdf.
36. Shah Vishal N., Orlov Oleg I., Orlov Cinthia, Takebe Manabu, Thomas Matthew, and Plestis Konstadinos (2018). Combined cryo-maze procedure and mitral valve repair through a ministernotomy. Multimed Man Cardiothorac Surg. doi: 10.1510/mmcts.2018.022.
37. Rykaczewski Konrad (2019). Modeling thermal contact resistance at the finger-object interface. Temperature, 6 (1), 85 – 95.