Thermoelectric device for collecting exhaled air condensate

Authors

  • L.I. Anatychuk 1Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine; 2 Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi str., Chernivtsi, 58000, Ukraine
  • O.L. Panasiuk SI “L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of the NAMS of Ukraine”, 5 M.Amosova str., Kyiv, 03038, Ukraine
  • P.A. Diachenko SI “L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of the NAMS of Ukraine”, 5 M.Amosova str., Kyiv, 03038, Ukraine
  • A.V. Zaremba SI “L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of the NAMS of Ukraine”, 5 M.Amosova str., Kyiv, 03038, Ukraine
  • M.V. Havryliuk Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine
  • R.R. Kobylianskyi 1Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine; 2 Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi str., Chernivtsi, 58000, Ukraine
  • V.V. Lysko 1Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine; 2 Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi str., Chernivtsi, 58000, Ukraine

Keywords:

diagnostics, coronavirus, condensate, exhaled air, thermoelectric cooling

Abstract

The article presents the results of the design development and a description of the manufactured experimental sample of a new highly efficient thermoelectric condenser of pulmonary air for the diagnosis of coronavirus and other diseases with an extended range of condensation temperatures below -20 °C and close to -70 °C. The method of using the developed device in medical diagnostics and the results of its experimental studies are described.

Bibl. 5, Figs. 5.

References

1. Hunt John (2007). Exhaled breath condensate—an overview. Immunol Allergy Clin North Am., 27 (4), 587–596.

2. Hunt J. (2002). Exhaled breath condensate: An evolving tool for noninvasive evaluation of lung disease. J Allergy Clin Immunol;110(1),28–34.

3. Horvath I., Hunt J. and Barnes P.J. (2005). Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J.,26,523–548.

4. Konstantinidi Efstathia M., Lappas Andreas S., Tzortzi Anna S., and Behrakis Panagiotis K. (2015). Exhaled breath condensate: technical and diagnostic aspects. Scientific World Journal, 2015, Article ID 435160, 25 pages.

5. Anatychuk L.I., Kobylianskyi R.R., Lysko V.V. (2022). Computer design of a thermoelectric condenser of pulmonary air for the diagnosis of coronavirus and other diseases. J.Thermoelectricity, 1, 65-72.

How to Cite

Anatychuk, L., Panasiuk, O., Diachenko, P., Zaremba, A., Havryliuk, M., Kobylianskyi , R., & Lysko, V. (2024). Thermoelectric device for collecting exhaled air condensate. Journal of Thermoelectricity, (3), 41–49. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/141

Issue

Section

Thermoelectric products

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.