Features of structural, energetic, electrokinetic investigation of energy and electrokinetic characteristics of thermoelectric material TiCo1-xMnxSb
Keywords:
electronic structure, electrical resistivity, Seebeck coefficientAbstract
The crystal and electronic structure, temperature and concentration dependences of the resistivity and the Seebeck coefficient of the thermoelectric material TiСo1-xMnxSb, х = 0.01–0.10, in the temperature range T = 80-400 K have been studied. It was shown that the doping of the initial TiCoSb semiconductor by Mn atoms is accompanied by the simultaneous generation of structural defects of acceptor and donor nature and the appearance in the band gap of acceptor band ɛA (substitution of Co atoms by Mn ones) and also donor bands ɛ1D and ɛ2D of different nature. The concentration ratio of the ionized acceptors and donors generated in TiСo1-xMnxSb determines the position of the Fermi level ɛF and the mechanisms of electrical conductivity of the thermoelectric material. Bibl. 14, Fig. 7.
References
Anatychuk L.I. (1979). Termoelementy i termoelectricheskiie ustroistva. Spravochnik. [Thermoelements and thermoelectric devices. Reference book]. Kyiv: Naukova dumka [in Russian].
Romaka V.V., Romaka L.P., Krayovskyy V.Ya., Stadnyk Yu.V. (2015). Stanidy ridkisnozemelnykh ta perekhidnykh metaliv [Stannides of rare earth and transition metals] Lviv: Lvivska Polytechnika [in Ukrainian].
Romaka L.P., Shelyapina M.G., Stadnyk Yu.V., Fruchart D., Hlil E.K., Romaka V.A. (2006). Peculiarity of metal–insulator transition due to composition change in semiconducting TiCo1-xNixSb solid solution. I. Electronic structure calculations, J. Alloys Compd., 414, 46–50.
Romaka V.A., Stadnyk Yu.V., Krayovskyy V.Ya., Romaka L.P., Guk O.P., Romaka V.V., Mykyuchuk M.M., Horyn A.M. (2020). Novitni termochutlyvi materialy ta peretvoriuvachi temperatury [New thermosensitive materials and temperature converters]. Lviv, Lvivska Polytechnika [in Ukrainian].
Stadnyk Yu.V., Romaka V.A., Shelyapina M.G., Gorelenko Yu.K., Romaka L.P., Fruchart D., Tkachuk A.V., Chekurin V.F. (2006). Impurity band effect on TiCo1-xNixSb conduction. Donor impurities. J. Alloys Compd., 421, 19–23.
Romaka V.A., Stadnyk Yu.V., Fruchart D., Tobola J., Gorelenko Yu.K., Romaka L.P., Chekurin V.F., Horyn A.M. (2007). Features of doping the p-TiCoSb intermetallic semiconductor with a Cu donor impurity. 1. Calculation of electron structure. Ukr. J. Phys., 52(5), 453–457.
Romaka V.A., Stadnyk Yu.V., Fruchart D., Tobola J., Gorelenko Yu.K., Romaka L.P., Chekurin V.F., Horyn A.M. (2007). Specific features of doping the p-TiCoSb intermetallic semiconductor
with a Cu donor impurity. 2. Eхperimental Studies. Ukr. J. Phys., 52(7), 650–656.
Romaka V.A., Stadnyk Yu.V., Akselrud L.G., Romaka V.V., Frushart D., Rogl P., Davydov V.N., Gorelenko Yu.K. (2008). Mechanism of local amorphization of a heavily doped Ti1-xVxCoSb intermetallic semiconductor. Semiconductors, 42(7), 753–760.
Romaka V.A., Stadnyk Yu.V., Romaka L.P., Krayovskyy V.Ya., Romaka V.V., Horyn A.M., Konyk M.B., Romaniv I.M., Rokomaniuk M.V. (2019). Features of structural, energetic and magnetic characteristics of thermoelectric material Ti1-xScxCoSb. J. Thermoelectricity, 1, 25–41.
Roisnel T., Rodriguez-Carvajal J. (2001). WinPLOTR: a windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. EPDIC7 378–381, 118–123.
Schruter M., Ebert H., Akai H., Entel P., Hoffmann E., Reddy G.G. (1995). First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Phys. Rev. B 52, 188–209.
Moruzzi V.L., Janak J.F., Williams A.R. (1978). Calculated electronic properties of metals. NY: Pergamon Press.
Shklovskii B.I. and Efros A.L. (1984). Electronic properties of doped semiconductors NY: Springer; (1979) Moscow: Nauka.
Mott N.F., Davis E.A. (1979). Electron processes in non-crystalline materials. Oxford: Clarendon Press.