Electronic phase transitions in thin Bi1-XSbX films

Authors

  • E.I. Rogacheva National Technical University “Kharkiv Polytechnic Institute” 2 Kyrpychova Str., Kharkiv, 61002, Ukraine
  • A.N. Doroshenko National Technical University “Kharkiv Polytechnic Institute” 2 Kyrpychova Str., Kharkiv, 61002, Ukraine
  • A.Yu. Sipatov National Technical University “Kharkiv Polytechnic Institute” 2 Kyrpychova Str., Kharkiv, 61002, Ukraine

Keywords:

Bi1-xSbx, thin film, solid solution, concentration, phase transition, thermoelectric properties, galvanomagnetic properties

Abstract

The purpose of the present work is to study the concentration dependences of thermoelectric (TE) and galvanomagnetic properties of thin Bi1-xSbx films in the range x = 0 – 0.25. The thin films with thicknesses d = (250 ± 10) nm were prepared by thermal evaporation in vacuum of Bi1-xSbx polycrystals onto (111) mica substrates and the transport properties (the electrical conductivity, Seebeck coefficient, Hall coefficient, electronic and hole mobility, magnetoresistance) of the films were measured at room temperature. It was established that all anomalies in the concentration dependences of the properties, observed earlier in the Bi1-xSbx bulk crystals and attributed to electronic phase transitions, were reproduced in thin films. The data obtained represent another evidence of the existence of the concentration peculiarities in the transport properties of Bi1-xSbx solid solutions, indicate a good correspondence between the compositions of Bi1-xSbx initial polycrystals and those of the thin films, and should be taken into account when interpreting the results of studies and predicting properties of Bi1-xSbx crystals and thin films. Bibl. 21. Fig. 4.

References

Anatychuk L.I. (1979). Termoelementy i termoelektricheskie ustroistva: spravochnik [Thermoelements and thermoelectric devices: reference book] Kyiv, Naukova dumka [in Russian].

Lenoir B., Scherrer H. and Caillat T. (2001). An overview of recent developments for BiSb alloys, Chapter 4, In: Tritt T.M. (ed.) Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research I, Vol. 69. San Diego, Academic Press.

Uher C. (ed.) (2016). Materials aspect of thermoelectricity. CRC Press, Boca Raton: Taylor & Francis Group.

Fu L., Kane C.L. and Mele E.J. (2007). Topological insulators in three dimensions. Phys. Rev. Lett., 98(10), 106803.

Hsieh D., Qian D., Wray L., Xia Y., Hor Y.S., Cava R.J. and Hasan M.Z. (2008). A topological Dirac insulator in a quantum spin Hall phase. Nature, 452, 970-974.

Takahashi R. and Murakami S. (2012). Thermoelectric transport in topological insulators Semicond. Sci. Technol., 27(12), 124005-8.

Müchler L., Casper F., Yan B., Chadov S., and Felser C. (2013). Topological insulators and thermo-

electric materials. Phys. Stat. Solidi RRL, 7(1-2), 91-100.

Ugay Ya.A., Goncharov Ye.G., Semenova G.V. and Lazarev V.B. (1989). Phase equilibria between phosphorus, arsenic and bismuth. Moscow, Nauka (in Russian).

Brandt N.B., Chudinov S.M., and Karavaev V.G. (1976). Investigation of the zero-gap state induced by a magnetic field in bismuth-antimony alloys. Sov. Phys. JETP, 43(6), 1198-1209; Zh. Eksp. Teor. Fiz. 70, 2296-2317 (in Russian)

Yasaki T. and Abe Y. (1968). Galvanomagnetic investigations of the Bi1-xSbx (0 < x < 0.15) system at 77 K. J. Phys. Soc. Jpn., 24(2), 290-295.

Mironova G.A., Sudakova M.B., Ponomarev Ya.G. (1980). Dispersion law of carriers in the Bi1-xSbx alloys. Sov. Phys. Solid State, 22(12), 2124; Fizika tverd. tela, 22(12), 1980, pp. 3628-3634

(in Russian).

Mironova G.A., Sudakova M.B., Ponomarev Ya.G. (1980). Investigation of the band structure of semiconducting Bi1-xSbx alloys. Sov. Phys. JETP, 51(5), 918-929.

Kitagawa H., Noguchi H., Kiyabu T., Itoh M. and Noda Y. (2004). Thermoelectric properties of Bi Sb semiconducting alloys prepared by quenching and annealing. J. Phys. Chem. Solids, 65(7), 1223-1227.

Malik K., Das D., Mondal D., Chattopadhyay D., Deb A.K., Bandyopadhyay S. and Banerjee A. (20112). Sb concentration dependent structural and resistive properties of polycrystalline Bi-Sb alloys. J. Appl. Phys., 112(12), 083706.

Dutta S., Shubha V. and Ramesh T.G. and D'Sa F. (2009). Thermal and electronic properties of Bi1−xSbx alloys. J. Alloy Compd., 467(1), 305–309.

Lenoir B., Dauscher A., Cassart M., Ravich Y.I. and Scherrer H. (1998). Effect of antimony content on the thermoelectric figure of merit of Bi1-xSbx alloys. J. Phys. Chem. Solids., 59(1), 129-134.

Rogacheva E.I. and Drozdova A.A. (2006). Thermoelectric properties of polycrystalline bismuth-antimony solid solutions. J. Thermoelectricity, 2, 22-28.

Rogacheva E.I., Yakovleva A.A. (Drozdova A.A.), Pinegin V.I. and Dresselhaus M.S. (2008). Concentration anomalies of properties in Bi-Sb semimetallic solid solutions. J. Phys. Chem. Solids, 69(2-3), 580-584.

Rogacheva E.I., Drozdova A.A., Nashchekina O.N., Dresselhaus M.S. and Dresselhaus G.(2009). Transition into a gapless state and concentration anomalies in the properties of Bi1-xSbx solid solutions. Appl. Phys. Lett., 94(20), 202111.

Rogacheva E.I., Drozdova A.A. and Nashchekina O.N., Percolation effects in semimetallic Bi-Sb solid solutions, Phys. Stat. sol. (a), 207(2), 2010, pp. 344–347.

Rogacheva E.I., Doroshenko A.N., Nashchekina O.N. and Yu.V. Men′shov. (2013). Thermal conductivity in Bi1−xSbx solid solutions. J. Electron. Mater., 42(7), 2098-2102.

Rogacheva E.I., Doroshenko A.N., Pinegin V.I. and Dresselhaus M.S. (2013). Electronic phase transitions and structural instability in Bi1 xSbx solid solutions. J. Thermoelectricity, 6, 13-20.

Rogacheva E.I., Doroshenko A.N., Nashchekina O.N. and Dresselhaus M.S. (2016). Specific heat critical behavior in Bi1-xSbx solid solutions. Appl. Phys. Lett., 109(13), 131906.

Doroshenko A.N., Rogacheva E.I., Drozdova А.А., Martynova K.V., Men’shov Yu.V. (2016). Thermoelectric properties of polycrystalline Bi1-xSbx solid solutions in the concentration range x = 0 – 0.25. J. Thermoelectricity, 4, 23-36.

Rogacheva E.I., Doroshenko A.N., Drozdova A.A., Nashchekina O.N., Men'shov Yu.V.(2020). Galvanomagnetic properties of polycrystalline Bi1-xSbx solid solutions in the concentration range x = 0 - 0.25. Functional Materials, 27(3) 488-496. https://doi.org/10.15407/fm27.03.488

Dresselhaus M.S., Lin Y.-M., Cronin S.B., Rabin O, Black M.R., Dresselhaus G. (2001). Quantum wells and quantum wires for potential thermoelectric applications, In Tritt T.M. (ed.) Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III, Vol. 71. Academic Press, San Diego, CA.

Rogacheva E.I., Nashchekina O.N., Orlova D.S., Doroshenko A.N., Dresselhaus M.S. (2017). Influence of composition on the thermoelectric properties of Bi1−xSbx thin films. J. Electron. Mater. 46(7),

р. 3821-3825.

Jain A.L. (1959). Temperature dependence of the electrical properties of bismuth-antimony alloys. Phys. Rev. B 114(6), 1518 -1528.

Rogacheva E.I., Grigorov S.N., Nashchekina O.N., Lyubchenko S.G., Dresselhaus M.S. (2003). Quantum size effects in n-type Bi thin films. Appl. Phys. Lett. 82, 2628-2630.

Petrosyan V.I., Molin V.N. Dagman E.I., Tavger B.A., Skripkina P.A., Alexandrov L.N.(1971). Quantum size transition semimetal-semiconductor in super-thin Bi films. Phys. Metallov i Metallovedenie, 31, 725-730 (in Russian)

Rogacheva E.I. (2003). Self-organization processes in impurity subsystem of solid solution. J. Phys. Chem. Solids, 64(9-10), 1579-1583.

Tang Sh., Dresselhaus M.S. (2012). Phase diagrams of Bi1-xSbx thin films with different growth orientations. Phys.Rev.B, 86(7), 075436(1-6). DOI: 10.1103/PhysRevB.86.075436

How to Cite

Rogacheva, E., Doroshenko, A. ., & Sipatov, A. (2024). Electronic phase transitions in thin Bi1-XSbX films. Journal of Thermoelectricity, (2), 12–24. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/58

Issue

Section

Materials research