On the temperature dependences of thermoelectric characteristics of bismuth telluride-metal transient layer with due regard for percolation effect

Authors

  • P.V. Gorsky 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • N.V. Mytskaniuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine

Keywords:

thermoelectric material-metal contact, near-contact transient layer, electrical contact resistance, thermal contact resistance, thermoEMF, percolation theory

Abstract

The basic relationships are obtained by calculation, which determine the temperature dependences of thermoelectric characteristics of thermoelectric material-metal transient contact layers with due regard for percolation theory. Specific quantitative results and plots of the temperature dependences of the electrical and thermal contact resistances, the thermoEMF, the power factor, and the dimensionless thermoelectric figure of merit are given for bismuth telluride – nickel contact pair. It has been established that in the temperature range of 200-400 K on retention of uneven distribution of metal particles in transient layer and its thickness in the range of 20-150 µm, the electrical contact resistance varies from 7·10-7 to 1.9·10-5 Оhm·сm2, the thermal contact resistance – from 0.052 to 0.98 K·сm2/W, the thermoEMF– from 155 to 235 µV/K, the power factor – from 4.2·10-5 to 6.8·10-5 W/(m·K2), the dimensionless thermoelectric figure of merit  – from 0.35 to 1.08. After levelling the concentration, the electrical contact resistance decreases by a factor of 1.12 – 3.6, the thermal contact resistance decreases by a factor of 1.15 – 2.08, the thermoEMF is practically unvaried, the power factor increases by a factor of 1.19 – 2.79, the dimensionless thermoelectric figure of merit increases maximum 1.2 times. Bibl. 14, Fig. 22.

References

Anatychuk L.I. (2003). Termoelektrichestvo. Tom 2. Termoelektricheskiie preobrazovateli energii [Thermoelectricity. Vol.2. Thermoelectric power converters]. Chernivtsi: Institute of Thermoelectricity [in Russian].

Aswal D.K., Basu R., Singh A. (2016). Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manag., 114, 50-67. http://refhub.elsevier.com/S2468-6069(18)30133-3/sref1

Anatychuk L.I., Kuz R.V. (2012). The energy and economic parameters of Bi-Te based thermoelectric generator modules for waste heat recovery. J.Thermoelectricity, 4, 7 5-82.

Drabkin I.A., Osvensky V.B., Sorokin A.I., Panchenko V.P., Narozhnaia О.Е. (2017). Kontaktnoie soprotivleniie v sostavnykh termoelektricheskikh vetviakh [Contact resistance in composite thermoelectric legs]. Fizika i Tekhnika Poluprovodnikov – Semiconductors, 51(8), 1038-1040 [in Russian].

Alieva T.D., Barkhalov B.Sh., Abdinov D.Sh. (1995). ). Struktura i elektricheskiie svoistva granits razdela kristallov Bi0.5Sb1.5Te3 i Bi2Te2.7Se3 s nekotorymi splavami [Structure and electrical properties of interfaces between Bi0.5Sb1.5Te3 and Bi2Te2.7Se3 crystals with certain alloys]. Neorganicheskiie Materialy – Inorganic Materials, 31 (2), 194-198.

Gupta Rahul P., Xiong K., White J.B., Cho Kyeongjae, Alshareef H.N., Gnade B.E. (2010). Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization. Journal of the Electrochemical Society, 157 (6), H666-H670. DOI: 10.1149/1.3385154

Gupta R.P., McCarty R., Sharp J. (2014). Practical contact resistance measurement method for bulk Bi2Te3 based thermoelectric devices. J. El. Mat., 43(6), 1608-1612.

Bublik V.T., Voronin A.I., Ponomarev V.F., Tabachkova N.Yu. (2012). Izmeneniie struktury prikontaknoi oblasti termoelektricheskikh materialov na osnove telluride vismuta pri povyshennykh temperaturakh [Change in the structure of near-contact area of thermoelectric materials based on bismuth telluride at elevated temperatures]. Izvestiia vysshykh uchebnykh zavedenii. Materaily Elektronnoi Tekhniki - News of Higher Educational Institutions. Materials of Electronic Technique, 2, 17-20 [in Russian].

Zaiman G. (1982). Models of disorder. Moscow: Mir [Russian transl.]

Snarskii A.O., Zhenirovskii M.I., Bezsudnov I.V. (2006). The law of Wiedemann-Franz in thermoelectric composites. J.Thermoelectricity, 3, 59-65.

Klemens P.G. (1958). Lattice thermal conductivity. Solid State Physics. Advances in Research and Applications. Vol.7. New York: Academic Press Inc. Publishers.

Tikhonov A.N., Samarskiy A.A. (1972). Uravneniia matematicheskoi fiziki [Mathematical physics equations]. Moscow: Nauka [in Russian].

Goltsman B.M., Kudinov I.A., Smirnov I.A. (1972). Poluprovodnikovyie termoelektricheskiie materaily na osnove Bi2Te3 [Semiconductor thermoelectric materials based on Bi2Te3]. Moscow: Nauka [in Russian].

Lifshits E.M., Pitaevskii L.P. (1979). Fizicheskaia kinetika [Physical kinetics]. Moscow: Nauka [in Russian].

How to Cite

Gorsky , P., & Mytskaniuk, N. (2024). On the temperature dependences of thermoelectric characteristics of bismuth telluride-metal transient layer with due regard for percolation effect. Journal of Thermoelectricity, (3), 20–38. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/78