Effective medium theory for the thermoelectric properties of composite materials with various percolation thresholds

Authors

  • A.O. 1. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Ave., Kyiv, 03056 Ukraine. 2. Institute of Information Registration Problems of the NAS of Ukraine, 2 Shpaka Str., 03113 Kyiv, Ukraine
  • P. Yuskevich National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” 37 Peremohy Ave., Kyiv, 03056, Ukraine

Keywords:

thermoelectricity, percolation theory, percolation thresholds, composites, effective properties

Abstract

In the work, a modified effective medium theory is constructed for calculating the effective properties of thermoelectric composites with different values of percolation thresholds. It is shown that even at concentrations beyond the critical region, the threshold value is essential for determining the effective properties. Two fundamentally different cases of a set of local properties of the composite are considered. In one of these cases, the conductivity and thermal conductivity of one of the phases is simultaneously greater than the conductivity and thermal conductivity of the other phase. The second, anomalous case, when the electrical conductivity of the first phase (σ1) is greater than that of the second, but the thermal conductivity of the first phase is less than that of the second, shows unusual concentration behavior of effective conductivity, i.e. with an increase in the well-conducting phase, the effective conductivity σе shows a decrease (rather than growth as in the standard case, see Fig. 1a), which at p ≈ pc goes over to growth. Bibl. 5, Fig. 5.

 

References

Torquato S. (2002). Random heterogeneous materials. Microstructure and macroscopic properties. New York: Springer Verlag. doi: 10.1115/1.1483342

Balagurov B.Ya. (2015). Elektrofizicheskiie svoistva kompozitov [Electrophysical properties of composites]. Moscow: Lenand [in Russian].

Choy T.C. (2016). Effective medium theory: principles and applications. Oxford: Oxford University Press.

doi:10.1093/acprof:oso/9780198705093.001.0001

Andrianov I.V., Awrejcewicz J., Danishevskyy V.V. (2018). Asymptotical mechanics of composites. Cham, Germany: Springer. doi: 10.1007/978-3-319-65786-8

Andrianov I.V., Awrejcewicz J., Starushenko G.A. (2017). Asymptotic models and transport properties of densely packed, high-contrast fibre composites. Part I: Square lattice of circular inclusions. Compos. Struct., 179, 627. doi: 10.1016/j.compstruct.2017.07.070

Andrianov I.V., Awrejcewicz J., Starushenko G.A. (2017). Asymptotic models for transport properties of densely packed, high-contrast fibre composites. Part II: Square lattices of rhombic inclusions and hexagonal lattices of circular inclusions. Compos. Struct.,180, 359. doi: 10.1016/j.compstruct.2017.07.068

Snarskii A., Bezsudnov I.V., Sevryukov V.A., Morozovskiy A., Malinsky J. (2016). Transport processes in macroscopically disordered media. From mean field theory to percolation. New York: Springer Verlag. doi: 10.1007/978-1-4419-8291-9

Landau L. D., Lifshitz E. M. (1984). Electrodynamics of continuous media. 2 ed. Oxford: Butterworth-Heinemann.

Bruggeman V.D. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Leipzig), 416, 664. doi: 10.1002/andp.19354160705

Landauer R. (1952). The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 784. doi:10.1063/1.1702301

Sarychev A.K., Vinogradov A.P. (1983). Effective medium theory for the magnetoconductivity tensor of disordered material. phys. stat. sol. (b), 117, K113-K118. doi: 10.1002/pssb.2221170252

Samoilovich A.G. (2007). Termoelektricheskiie i termodinamicheskiie metody prevrashcheniia energii [Thermoelectric and thermodynamic power conversion methods]. Moscow: LKI (URSS) [in Russian].

Nye J.F. (964). Physical properties of crystals. Oxford: Clarendon Press.

Webmann I., Jortner J.,Cohen M. H. (1977). Phys.Rev. B, 16, 6, 2959.

Rowe D. M. (2006). Thermoelectrics Handbook (Macro to Nano). Boca-Raton: Taylor Francis.

Lee S., Hippalgaonkar K., Yang F., Hong J., Ko C., Suh J., Liu K., Wang K., Urban J. J., Zhang X., Dames C., Hartnoll S. A., Delaire O., Wu J. (2017). Science, 355, 371.

Bergman D. J. (1978). The dielectric constant of a composite material—a problem in classical physics. Phys. Rep., 43, 9, 407.

Snarskii A., Zorinets D., Shamonin M., Kalita V. (2019). Theoretical method for calculation of effective properties of composite materials with reconfigurable microstructure: electric and magnetic phenomena. Phys. A: Stat. Mech. Appl. 535, 122467. doi: 10.1016/j.physa.2019.122467

Snarskii A., Shamonin M., Yuskevich P. (2020). Colossal magnetoelastic effects in magnetoactive elastomers. arxiv: 2002.11762.

Snarskii A., Shamonin M., Yuskevich P. (2020). Effective medium theory for the elastic properties of composite materials with various percolation thresholds. Materials, 13, 1243.

How to Cite

A.O., & Yuskevich, P. (2024). Effective medium theory for the thermoelectric properties of composite materials with various percolation thresholds. Journal of Thermoelectricity, (3), 39–49. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/79

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.