Максимуми коефіцієнта потужності термоелектриків: математичний підхід та практика
DOI:
https://doi.org/10.63527/1607-8829-2025-4-5-11Ключові слова:
maximum of power factor, thermoelectric moduleАнотація
Метою цієї статті є оцінка максимальних значень важливого термоелектричного параметра матеріалів – фактора потужності. На основі відомих з літератури формул, що зв'язують між собою термоелектричні параметри (ефективну масу та рухливість носіїв заряду, коефіцієнт Зеєбека, температуру), отримано функцію зазначеного фактора. Її обробка дозволяє використовувати отримані дані для аналізу експериментальних даних тих робіт, у яких з певних причин не наводяться екстремуми зазначеного термоелектричного параметра.Посилання
1. Hinterleitner B., Knapp I., Poneder M., Shi Y., Müller H., Eguchi G., Eisenmenger-Sittner C., Stöger-Pollach M., Kakefuda Y., Kawamoto N., Guo Q., Baba T., Mori T., Ullah S., Chen X.-Q., Bauer E. (2019). Thermoelectric performance of a metastable thin-film Heusler alloy. Nat. 576 (7785), 85-90. (DOI: https://doi.org/10.1038/s41586-019-1751-9)
2. Dehkordi M., Zebarjadi M., He J., T. M. Tritt T.M. (2015). Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Materials Sci. and Engin.: Rep., 97, 1-22. (DOI: https://doi.org/10.1016/j.mser.2015.08.001)
3. Samrand Shafeie S., Guo S., Hu Q., Fahlquist H., Erhart P., Palmqvist (2015). High-entropy alloys as high-temperature thermoelectric materials. Appl. Phys., 118 (18), 184905. (DOI: https://doi.org/10.1063/1.493548)
4. Li P., Qiu P., Xu Q. (2022). Colossal Nernst power factor in topological semimetal NbSb2. Nat. Commun. 13 (1), 7612. (DOI:10.1038/s41467-022-35289-z)
5. Wickramaratne D., Zahid F., Lake R. K. (2014). Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. Chem. Phys., 140, 124710.
6. Ge Y., Wan W., Ren Y., Liu Y. (2020). Large thermoelectric power factor of high-mobility transition-metal dichalcogenides with 1Thase. Phys. Rev. Res., 2, 013134. (DOI: https://doi.org/10.1103/PhysRevResearch.2.013134)
7. Zhou C., Lee Y. K., Yu Y., Byun S., Luo Z.-Z., Lee H., Ge B., Lee Y.-L., Chen X., Lee J. Y., Oana Cojocaru-Mirédin O., Chang H., Im J., Cho S.-P., Wuttig M., Dravid V. P., Mercouri G. Kanatzidis M. G., Chung I . (2021). Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378-1384. (DOI: https://doi.org/10.1038/s41563-021-01064-6)
8. Snyder G. J., Pereyra A., Gurunathan R. (2022). Effective mass from Seebeck coefficient. Adv. Funct. Materials, 32 (20), 2112772. (DOI: https://doi.org/10.1002/adfm.202112772)
9. Snyder G. J., Snyder A. H. , Wood M., Gurunathan R., Snyder B. H., Niu Ch. (2020). Weighted mobility Adv. Mater., 32 (25), e2001537. (DOI: https://doi.org/10.1002/adma.202001537)
10. Nakhutsrishvili I. (2025). Mutual connection between concentration of charge carriers and Seebeck coefficient in Si0.96Ge0.04 thermoelectric by annealing in the range (523-673)K . Johns. Matth. Technol. Rev., 69 (3), 1-5. (DOI: https://doi.org/10.1595/205651325X17302083510551)
11. Nakhutsrishvili I., Adamia Z. (2024). Optimizing power factor in SixGe1-x alloys and some other thermoelectric materials: Insights and empirical relationships. Materials Sci. Res. and Rev. 7, (2), 204-209.
12. Nakhutsrishvili I. (2024). Method for determining the maximum of power factor of some thermoelectric. GESJ Phys., 1, 36-39.
13. Kush L., Srivastava S., Jaiswal Y., Srivastava Y. (2020). Thermoelectric behaviour with high lattice thermal conductivity of nickel base Ni2CuCrFeAlx (x = 0.5, 1.0, 1.5 and 2.5) high entropy alloys. Materials Res. Expr., 7 (3), 035704. (DOI: https://doi.org/10.1088/2053-1591/ab7d5a
14. Tewari G. C., Tripathi T. S., Yamauchi H., Karppinen M. (2014). Thermoelectric properties of layered antiferromagnetic CuCrSe2. Materials Chem. Phys., 145 (1/2), 156-161. (DOI: https://doi.org/10.1016/j.matchemphys.2014.01.053)
15. Khan, W. H. Shah, N. Khan, Tufail M., Khan S., Syed W.A. (2021). Effects on the Seebeck coefficient and electrical properties of Tl10-x AxTe6 (A= Pb & Sn) in chalcogenide system. Ovonic Res., 17 (2), 201-208.
16. Cook B. (2022). Silicon–Germanium: The legacy lives on. Energ. 15 (8), 2957. (DOI: https://doi.org/10.3390/en15082957)
17. Barbakadze K., Bokuchava G., Isakadze Z. (2022). High temperature thermoelectric genrator based on SiGe alloy LELP-Nat. Defence Acad. Geo. 47, 45-52.
18. Li Y., Wang G., Mehdi A.-S., Procek Marcin, Radamson H. H. (2021). Si and SiGe nanowire for micro-thermoelectric generator: A review of the current state of the art. Front. in Mater., 8, 611078. (DOI: https://doi.org/10.3389/fmats.2021.611078)
19. Schwinge C., Kühnel K., Emara J., Roy L., Biedermann K., Weinreich W., Kolodinski S., Wiatr M., Gerlach G., Wagner-Reetz M. (2022). Optimization of LPCVD phosphorous-doped Si Ge thin films for CMOS-compatible thermoelectric applications. Appl. Phys. Lett., 120, 031903. (DOI: https://doi.org/10.1063/5.0076945)
20. Chiang P. T., Hu Sh., Yen W. T., Wu H.-J., Hsu H.-P., Lan Ch.-W. (2023). A study of iron-doped SiGe growth for thermoelectric applications. Alloys and Comp., 967, 171700. (DOI: https://doi.org/10.1016/j.jallcom.2023.171700)
21. Murata H., Nozawa K., Suzuki T., Kado Y., Suemasu T., Toko K. (2022). Si1-xGex anode synthesis on plastic films for flexible rechargeable batteries. Sci. Rep., 12, 13779. (DOI: https://doi.org/10.1038/s41598-022-18072-4)

