Вплив відхилення від стехіометрії на теплопровідність полікристалів Bi2Se3
Ключові слова:
селенід вісмуту, стехіометрія, концентрація, дефектна структура, теплопровідністьАнотація
Отримано залежності електронної та граткової теплопровідності від складу (59.9 - 60.0 ат. % Se) полікристалів Bi2Se3 після довготривалого відпалу за температури 650 К. Виявлено немонотонний характер цих залежностей, який пояснюється зміною у фазовому складі та дефектній структурі при відхиленні від стехіометрії. Зроблено оцінку меж області гомогенності Bi2Se3. Результати даної роботи підтверджують результати, які були отримані нами раніше при дослідженні впливу відхилення від стехіометрії (59.9 - 60.0 at. % Se) на електропровідність, коефіцієнт Холла, коефіцієнт Зеєбека та мікротвердість полікристалів Bi2Se3 після аналогічної технології приготування. Бібл. 33, рис. 3.
The dependences of electronic and lattice thermal conductivity on the composition (59.9 - 60.0) at. % Se of Bi2Se3 polycrystals subjected to a long-term annealing at 650 K. A non-monotonic behavior of these concentration dependences, associated with a change in the phase composition and defect structure under the deviation from stoichiometry, was observed. The boundaries of the Bi2Se3 homogeneity region were estimated. The results of the present work confirm those obtained earlier in our study of the effect of deviation from stoichiometry (59.9 - 60.0 at.% Se) on the electrical conductivity, Hall coefficient, Seebeck coefficient and microhardness of Bi2Se3 polycrystals after a similar preparation technology. Bibl. 33. Fig. 3.
Посилання
Rowe D.M. (1995). CRC Handbook of Thermoelectrics. Boca Raton, London, New York, Washington: CRC Press.
Xia Y., Qian D., Hsien D., Wray L., Pai A., Bansil A., Grauer D., Hor Y.S., Cava R.J., Hasan M.Z.(2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5, 398 – 402.
Chizhevskaya S.N., Shelimova L.E., Zaitseva I.A. (1994). Critical evaluation and coordination of Bi-Se phase diagram data. Inorg. Mater, 30, 1289-1387.
Poretskaya L.V., Anukhin A.I., Korzhuev M.A. (1991). Phase diagram of Bi-Se system in region of Bi2Se3 compound. Izv. Academy of Sciences of the USSR. Inorg. Mater, 27, 1190-1193.
Abrikosov N.Kh, Bankina V.F., Poretskaya L.V., Skudnova E.V., Shelimova L.E. (1967). Semiconductor compounds, their preparation and properties. Moscow: Nauka [in Russian].
Dumon A., Lichanot A., Gromb S. (1973). Properties electroniques du seleniure de bismuth Bi2Se3 fritte: domaine d'existence, J. Chim. Phys. et Phys.-Chim. Biol., 70 (10), 1546-1554.
Abrikosov N.Kh., Bankina V.F., Kharitonovich K.F. (1960). Investigation of the phase diagram of Bi-Se. Russ. J. Inorg. Chem. 5, 2011-2016 [in Russian].
Sher A.A., Odin I.N., Novoselova A.V. (1986). Study of phases in the Bi-Se system. Russ. J. Inorg. Chem. 31, 764-767 [in Russian].
Okamoto H. (1994). The Bi-Se (Bismuth-Selenium) system. J. Phase Equlibria, 15 (2), 195-201.
Zhang J.-M., Ming W., Huang Z., Liu G.-B., Kou X., Fan Y., Wang K.L., Yao Y. (2013). Stability, electronic, and magnetic properties of the magnetically doped topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Rev. B, 88, 235131-1-9.
Hsieh D., Xia Y., Qian D., Wray L., Dil J.H., Meier F., Osterwalder J., Patthey L., Checkelsky J.G., Ong N.P., Fedorov A.V., Lin H., Bansil A., Grauer D., Hor Y.S., Cava R.J., Hasan M.Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460, 1101-1105.
Hor Y.S., Richardella A., Roushan P., Xia Y., Checkelsky J.G., Yazdami A., Hasan M.Z., Ong N.P., Cava R.J. (2009). p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B, 79, 195208-1-5.
Wang Z., Lin T., Wei P., Liu X., Dumas R., Liu K., Shi J. (2010). Tuning carrier type and density in Bi2Se3 by Ca-doping. Appl. Phys. Lett., 97, 042112-1-3.
Urazhdin S., Bilc D., Mahanti S.D., Tessmer S.H., Kyratsi T., Kanatzidis M.G. (2004). Surface effects in layered semiconductors Bi2Se3 and Bi2Te3. Phys. Rev. B, 69, 085313-1-7.
Gobrecht H., Boeters K.E., Pantzer G. (1964). Über Kristallstruktur und elektrische Eigenschaften der Wismutselenide Bi2Se2 und Bi2Se3. Z. Phys. 177 (1), 68-83.
Hyde G.R., Beale H.A., Spain I.L., Woollam J.A. (1974). Electronic properties of Bi2Se3 crystals. J. Phys. Chem. Solids, 35, 1719-1728.
Navratil J., Horak J., Plechacek T., Kamba S., Lostak P., Dyck J.S., Chen W., Uher C. (2004). Conduction band splitting and transport properties of Bi2Se3. J. Solid State Chem., 177,
-1712.
Zhang H., Liu C.-X., Qi X.-L., Dai X., Fang Z., Zhang S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5, 438-442.
Oleshko E.V., Korolyshin V.N. (1985). Quasi-relativistic band spectrum of bismuth selenide. Sov. Phys. Semicond., 19 (10), 1839-1841 [in Russian].
Kulbachinskii V.A., Miura N., H. Nakagawa, Arimoto H., Ikaida T., Lostak P., Drasar C.(1999).
Conduction-band structure of Bi2-xSbxSe3 mixed crystals by Shubnikov–de Haas and cyclotron resonance measurements in high magnetic fields. Phys. Rev. B, 59 (24), 15733-15739.
Kulbachinskii V.A., Miura N., Arimoto H., Ikaida T., Lostak P., Horak H., Drasar C. (1999). Cyclotron resonance in high magnetic fields in Bi2Se3, Bi2Te3 and Sb2Te3 based crystals. J. Phys. Soc. Jpn., 68, 3328-3333.
Bogatyrev I.F., Vasko A., Tichy L., Horak J. (1974). Bi2Se3 crystals doped with halogen. Phys. Stat. Sol. A, 22, K63.
Wu K.K., Ramachandran B., Kuo Y.K., Sankar R., Chou F.C. (2016). Influence of induced defects on transport properties of the Bridgman grown Bi2Se3-based single crystals. Journal of Alloys and Compounds, 682, 225-231.
West D., Sun Y.Y., Wang H., Bang J., Zhang S.B. (2012). Native defects in second-generation topological insulators: effect of spin-orbit interaction on Bi2Se3. Phys. Rev. B, 86, 121201-1-4.
Horak J., Stary Z., Lostak P., Pancir J. (1990). Anti-site defects in n-Bi2Se3 crystals. J. Phys. Chem. Solids, 51, 12, 1353-1360.
Sklenar A., Drasar C., Krejcova A., Lostak P. (2000). Optical properties of Bi2Se3-xAsx single crystals. Cryst. Res. Technol., 35, 1069.
Menshikova S.I., Rogacheva Е.I. (2020). Effect of deviation from stoichiometry on transport and mechanical properties of Bi2Se3 polycrystals. Low Temperature Physics (accepted).
Navratil J., Plechacek T., Horak J., Karamazov S., Lostak P., Dyck J.S., W Chen., Uher C.(2001). Transport properties of Bi2-xInxSe3 single crystals. Journal of Solid State Chemistry, 160,
-481.
Kulbachinskii V.A., Kytin V.G., Kudryashov A.A., Tarasov P.M. (2012). Thermoelectric properties of Bi2Te3, Sb2Te3 and Bi2Se3 single crystals with magnetic impurities. J. Solid State Chem., 193, 47–52.
Wang S., Sun Y., Yang J., Duan B., Wu L., Zhang W., Yang J. (2016). High thermoelectric performance in Te-free (Bi,Sb)2Se3 by structural transition induced band convergence and chemical bond softening. Energy & Environmental Science, 00, 1-3.
Kang Y., Zhang Q., Fan C., Hu W., Chen C., Zhang L., Yu F., Tian Y., Xu B. (2017). High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. Journal of Alloys and Compounds, 700, 223-227.
Liu R., Tan X., Ren G., Liu Y., Zhou Z., Liu C., Lin Y., Nan C. (2017). Enhanced thermoelectric performance of Te-doped Bi2Se3-xTex bulks by self- propagating high-temperature synthesis. Crystals, 7, 257-1-8.
Liu W., Lukas K.C., McEnaney K., Lee S., Zhang Q., Opeil C.P., Chen G., Z. Ren (2013). Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy Environ. Sci., 6, 552-560.