Еволюція системи відцентрової дистиляції з термоелектричним тепловим насосом для космічних місій

Частина 1. Огляд публікацій по відцентровій дистиляції в період 1990 – 2017 рр.

Автор(и)

  • В.Г. Ріферт НТУ «КПІ», вул. Політехнічна, 6, Київ, 03056, Україна
  • Л.І. Анатичук 1. Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2. Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна
  • П.О. Барабаш НТУ «КПІ», вул. Політехнічна, 6, Київ, 03056, Україна
  • В.І. Усенко НТУ «КПІ», вул. Політехнічна, 6, Київ, 03056, Україна
  • А.П. Стрикун НТУ «КПІ», вул. Політехнічна, 6, Київ, 03056, Україна
  • А.С. Соломаха НТУ «КПІ», вул. Політехнічна, 6, Київ, 03056, Україна
  • В.Г. Петренко НТУ «КПІ», вул. Політехнічна, 6, Київ, 03056, Україна
  • А.В. Прибила 1. Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2. Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна

Ключові слова:

термоелектрика, тепловий насос, дистилятор

Анотація

У статті описано основні результати розробок і випробувань системи багатоступінчастої відцентрової вакуумної дистиляції (СМЕД) з термоелектричним тепловим насосом (ТНР). У цих роботах наведено основні відомості щодо інтегральних характеристик роботи системи, а саме: продуктивності по дистиляту, питомої витрати енергії на одиницю маси одержуваного дистиляту і якості дистиляту при випарюванні (концентруванні) водного розчину Nacl, урини й сумішей – урини з конденсатом, урини з конденсатом і гігієнічною водою. Бібл. 29, табл. 5.

The article describes the main results of the development and testing of a multistage centrifugal vacuum distillation (MCVD) system with a thermoelectric heat pump (THP). For the most part, these works present information on the integral characteristics of the system, namely: distillate capacity, specific energy consumption per unit mass of the obtained distillate and distillate quality during evaporation (concentration) of an aqueous solution of NaCl, urine and mixtures of urine with condensate and urine with condensate and hygienic water. Bibl. 29, Tabl. 5.

Посилання

Rifert V., Barabash P., Goliad N. (1990). Methods and processes of thermal distillation of water solutions for closed water supply systems . SAE Paper 901249, 20th Intersociety Conference on Environmental Systems (Williamsburg, July 1990).

2. Samsonov N., Bobe L., Novikov V., Rifert V., et al. (1994). Systems for water reclamation from humidity condensate and urine for space station. SAE Paper 941536, 24th International society Conference on Environmental Systems (June, 1994).

3. Samsonov N.M., Bobe L.S, Novikov V., Rifert V.G., Barabash P.A, et al. (1995). Development of urine processor distillation hardware for space stations. SAE Paper 951605, 25th International Conference on Environmental Systems (San Diego, July 1995).

4. Samsonov N.M., Bobe L.S, Novikov V., Rifert V.G., et al (1997). Updated systems for water recovery from humidity condensate and urine for the International space station. SAE Paper 972559, 27th International Conference on Environmental Systems (Nevada, July 1997).

5. Samsonov N.M., Bobe L.S, Novikov V., Rifert V.G., et al. (1999). Development and testing of a vacuum distillation subsystem for water reclamation from urine. SAE Paper 1999-01-1993, 29th International Conference on Environmental Systems, 1999.

6. Rifert, V., Usenko V., Zolotukhin I., MacKnight A., Lubman A. (1999). Comparison of secondary water processors using distillation for space applications. (1999). SAE Paper 99-70466, 29th International Conference on Environmental Systems (Denver, July 1999).

7. Rifert V, Stricun, A., Usenko, V. (2000). Study of dynamic and extreme performances of multistage centrifugal distiller with the thermoelectric heat pump. SAE Technical Papers 2000, 30th International Conference on Environmental Systems (Toulouse; France, 10-13 July 2000).

8. Rifert, V., Usenko V., Zolotukhin I., MacKnight A. and Lubman A. (2001). Design optimisation of cascade rotary distiller with the heat pump for water reclamation from urine. SAE Paper 2001-01-2248, 31st International Conference on Environmental Systems (Orlando, July 2001).

9. Rifert, V. G., Usenko V.I., Zolotukhin I.V., MacKnight A. and Lubman A. (2003). Cascaded distillation technology for water processing in space. SAE Paper 2003-01-2625. 34st International Conference on Environmental Systems (Orlando, July 2003).

10. Lubman A, MacKnight A, Rifert V, Zolotukhin I and Pickering K. (2006). Wastewater processing cascade distillation subsystem. design and evaluation (2006). SAE International, 2006-01-2273, July 2006.

11. Lubman A., MacKnight A., Rifert V., and Barabash P.,(2007). Cascade distillation subsystem hardware development for verification testing. SAE International, 2007-01-3177, July 2007.

12. Callahan M., Lubman A., MacKnight A., Thomas H.and Pickering K.. Cascade distillation subsystem development testing (2008). SAE International, 2008-01-2195, July 2008.

13. Callahan M., Lubman A., and Pickering K. (2009). Cascade distillation subsystem development: progress toward a distillation comparison test. SAE International, 2009-01 -2401, July 2009.

14. Callahan M., Patel V. and Pickering K. (2010). Cascade distillation subsystem development: early results from the exploration life support distillation technology comparison test. American Institute of Aeronautics and Astronautics, 2010-6149, July 2010.

15. McQuillan Jeff, Pickering Karen D., Anderson Moly, Carter Layne, Flynn Michael, Callahan Michael, Vega Leticia, Allada Rama and Yeh Jannivine Distillation technology down-selection for the exploration life support (ELS) water recovery systems element (2010). 40th International Conference on Environmental Systems, AIAA 2010-6125.

16. Patel V., Au H., Shull S., Sargusingh M., Callahan M.. (2014). Cascade distillation system – a water recovery system for deep space missions. ICES-2014-12, 44 International Conference on Environmental Systems (Tucson, Arizona, July 2014).

17. Loeftelholz David, Baginski Ben, Patel Vipul, MacKnight Allen, Schull Sarah, Sargusingh Miriam, Callahan Michael (2014). Unit operation performance testing of cascade distillation subsystem. ICES-2014-0014, 44th International Conference on Environmental Systems, (Tucson, Arizona, 13-17 July 2014).

18. Callahan Michael R., Sargusingh Mirian J. Honeywell cascade distiller system performance testing interim results. American Institute of Aeronautics and Astronautics.

19. Sargusingh Miriam, Callahan Michael (2015). Development of an exploration-class cascade distillation subsystem: performance testing of the generation 1.0 prototype. ICES-2015-150, 45th International Conference on Environmental Systems, 13-17 July 2015.

20. Rifert Vladimir G, Barabash Petr A., Usenko Vladimir, Solomakha Andrii S., Anatychuk Lukyan I., Prybyla A.V. (2017). Improvement the cascade distillation system for long-term space flights. 68th International Astronautical Congress (IAC) (Adelaide, Australia, 25-29 September 2017 IAC-17-A1.IP.25).

21. Rifert V.G., Anatychuk L.I., Barabash P.A, Usenko V.I., Strikun A.P., Prybyla A.V. (2017). Improvement of the distillation methods by using centrifugal forces for water recovery in space flight applications. J.Thermoelectricity, 1, 71-83.

22. Rifert V.G., Usenko V.I., Anatychuk L.I., Rozver Yu.Yu. (2011). Development and test of water regeneration from liquid waste on board of manned space crafts with the use of thermoelectric heat pumps. J.Thermoelectricity, 2, 14-25.

23. Anatychuk L.I., Brabash P.A., Rifert V.G., Rozver Yu.Yu., Usenko V.I., Cherkez R.G. (2013). Thermoelectric heat pump as a means of improving efficiency of water purification systems for biological needs for space missions. J.Thermoelectricity, 6, 78-83.

24. Aanatychuk L.I.., Prybyla A.V. (2015). Optimization of thermal connections in thermoelectric liquid-liquid heat pumps for water purification systems of space application. J.Thermoelectricity, 4, 45 – 51.

25. Anatychuk L.I. Prybyla A.V. (2015). Optimization of power supply system of thermoelectric liquid-liquid heat pump. J.Thermoelectricity, 6, 53 – 58.

26. Anatychuk L.I., Rozver Yu.Yu., Prybyla A.V. (2017). Experimental study of thermoelectric liquid-liquid heat pump. J.Thermoelectricity, 3, C. 33 – 39.

27. Anatychuk L.I., Prybyla A.V. (2017). Limiting possibilities of thermoelectric liquid-liquid heat pump. J.Thermoelectricity, 4, 33 – 39.

28. Anatychuk L.I., Prybyla A.V. (2017). The influence of quality of heat exchangers on the properties of thermoelectric liquid-liquid heat pumps. J.Thermoelectricity, 5, 33 – 39.

29. Anatychuk L.I., Prybyla A.V. (2017). On the coefficient of performance of thermoelectric liquid-liquid heat pumps with regard to energy loss for heat carrier transfer. J.Thermoelectricity, 6, 33 – 39.

##submission.downloads##

Як цитувати

Ріферт, В., Анатичук, Л., Барабаш, П., Усенко, В., Стрикун, А., Соломаха, А., … Прибила, А. (2024). Еволюція системи відцентрової дистиляції з термоелектричним тепловим насосом для космічних місій: Частина 1. Огляд публікацій по відцентровій дистиляції в період 1990 – 2017 рр. Термоелектрика, (1), 5–15. вилучено із http://jte.ite.cv.ua/index.php/jt/article/view/101

Номер

Розділ

Загальні проблеми

Статті цього автора (авторів), які найбільше читають

1 2 3 4 5 > >> 

Схожі статті

1 2 > >> 

Ви також можете розпочати розширений пошук схожих статей для цієї статті.