Computer simulation of temperature distributions in the human heart during cryoablation

Authors

  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0002-4664-3162
  • A.K. Kobylianska Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str, Chernivtsi, 58029, Ukraine
  • R.V. Fedoriv Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str, Chernivtsi, 58029, Ukraine

Keywords:

cryoablation, computer simulation, heart tissue, thermoelectric cooling

Abstract

The work presents a computer simulation of the temperature distribution in human cardiac tissue during the cryoablation procedure, taking into consideration thermophysical processes, in particular, blood circulation, heat exchange, metabolic processes, and phase transition. Using the Comsol Multiphysics computer programme and the finite element method, the dependence of the depth of cardiac tissue freezing on the cooling time was determined. Temperature distributions in different layers of the heart at different cooling temperatures of the working tool were obtained. The simulation results can be used to optimize cryoablation parameters in order to increase its efficiency and safety. Bibl. 35, Figs. 7, Tabl 1.

References

1. Zipes, D. P., & Jalife, J. (2013). Cardiac Electrophysiology: From Cell to Bedside. Elsevier.

2. Andrade, J. G., Khairy, P., & Dubuc, M. (2014). Cryoablation of atrial fibrillation. Heart Rhythm, 11(5), 819 – 825.

3. Calkins, H., Brugada, J., Packer, D.L., et al. (2017). HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm, 14(10), e275-e444.

4. Chun K.R.J., Bordignon S., Gunawardene M.A., et al. (2016). Single transseptal big Cryoballoon pulmonary vein isolation. Journal of Cardiovascular Electrophysiology, 27(1), 43 – 49.

5. Peltier J.C. (1834). Memoire sur la formation de la chaleur ou du froid aux points de jonction de deux metaux differents. Annales de Chimie et de Physique, 56, 371 – 387.

6. Min B.-K., Lee K.-S., Kim J., et al. (2019). Recent advances in thermoelectric cooling: Materials and applications. Advanced Functional Materials, 29(5), 1805365.

7. Schilling R.J., Rao A., Abrams D., et al. (2021). Advances in catheter-based atrial fibrillation ablation technologies. Circulation: Arrhythmia and Electrophysiology, 14(3), e009661.

8. Anatychuk L.I., Kobylianskyi R.R., Konstantinovich I.A., Lys'ko V.V., Puhantseva O.V., Rozver Y.Y., Tiumentsev V.A. (2016) Calibration bench for thermoelectric converters of heat flux. Journal of Thermoelectricity, 5, 65 – 72.

9. Anatychuk L.I., Vykhor L.M., Kotsur M.P., Kobylianskyi R.R., & Kadenyuk T.Ya. (2016). Optimal control of the time dependence of the cooling temperature in thermoelectric devices. Journal of Thermoelectricity, 5, 5 – 11.

10. Anatychuk L.I., Kobylianskyi R.R., & Kadenyuk T.Ya. (2017). Computer simulation of local thermal effects on human skin. Journal of Thermoelectricity, 1, 69 – 79.

11. Anatychuk L.I., Vikhor L.M., Kotsur M.P., Kobylianskyi R., & Kadeniuk T. (2018). Optimal control of time dependence of temperature in thermoelectric devices for medical purposes. International Journal of Thermophysics, 39, 108.

12. Anatychuk L.I., Vykhor L.M., Kobylianskyi R.R., & Kadenyuk T.Ya. (2018). Computer simulation of local temperature effects on human skin in dynamic mode. Bulletin of the National University "Lviv Polytechnic". Series: Physical and Mathematical Sciences, 898, 78 – 82.

13. Anatychuk L.I., & Kobylianskyi R.R. (2018). Computer simulation of non-stationary temperature effects on human skin. Journal of Thermoelectricity, 2, 14 – 22.

14. Anatychuk L.I., Kobylianskyi R.R., Konstantynovych I.A., Kuz R.V., Manik O.M. Nitsovych O.V., Cherkez R.G. (2016) Technology for manufacturing thermoelectric microthermopiles. Journal of Thermoelectricity, (6), 49 – 53.

15. Anatychuk L.I., Kobylianskyi R.R., & Fedoriv R.V. (2019). Computer simulation of the process of cryodestruction of human skin during thermoelectric cooling. Journal of Thermoelectricity, (2), 21 – 35.

16. Anatychuk L.I., Kobylianskyi R.R., & Fedoriv R.V. (2020). Computer simulation of cyclic temperature effects on human skin. Journal of Thermoelectricity, 2, 48 – 64.

17. Anatychuk L.I., Kobylianskyi R.R., & Fedoriv R.V. (2020). Computer simulation of cyclic temperature effects on oncological neoplasms of human skin. Journal of Thermoelectricity, (3), 29 – 46.

18. Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V., & Konstantinovich I.A. (2023). On the prospects of using thermoelectric cooling for the treatment of cardiac arrhythmia. Journal of Thermoelectricity, 2, 5 – 17.

19. R.R Kobylianskyi, A.V. Prybyla, I.A. Konstantynovych, V.V. Boychuk (2022) Results of experimental research on thermoelectric medical heat flow sensors. Journal of Thermoelectricity, (3-4), 68 – 81.

20. Anatychuk L.I., Kobylianskyi R.R., Prybyla A.V., Konstantynovych I.A. and Boychuk V.V. (2022) Computer simulation of the thermoelectric heat flow sensor on the surface of the human body. Journal of Thermoelectricity, (2), 46 – 60.

21. R.R. Kobylianskyi, V.V. Lysko, A.V. Prybyla, I.A. Konstantynovych, A.K. Kobylianska, N.R. Bukharaeva, V.V. Boychuk (2023) Technological modes of manufacturing thermoelectric sensors for medical purposes. Journal of Thermoelectricity, (4), 49 – 63.

22. L.I. Anatychuk, R.R Kobylianskyi, V.V. Lysko, A.V. Prybyla, I.A. Konstantinovych, A.K. Kobylyanska, M.V. Havrylyuk, V.V. Boychuk (2023) Method of calibration of thermoelectric sensors for medical purposes. Journal of Thermoelectricity, (3), 37 – 49.

23. Gill W., & Fraser I. (1968). A look at Cryosurgery. Scot. Med. J., (13), 268 – 273.

24. Van Venrjy G. (1975). Freeze-etching: Freezing velocity and crystal size at different locations in samples. Cryobiology, 12(1), 46 – 61.

25. Hirschhorn M.L. (1963). Patent US 3093135, Cooled surgical instrument.

26. Hirschhorn M.L. (1970). Patent US 3502080, Thermoelectrically cooled surgical instrument.

27. Pennes H.H. (1948). Analysis of tissue and arterial blood temperatures in the resting forearm. J. Appl. Physiol., 1(2), 93 – 122.

28. Jiang S.C., Ma N., Li H.J., & Zhang X.X. (2002). Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns, 28, 713 – 717.

29. Cetingul M.P., & Herman C. (2008). Identification of skin lesions from the transient thermal response using infrared imaging technique. IEEE, 1219 – 1222.

30. Ciesielski M., Mochnacki B., & Szopa R. (2011). Numerical simulation of biological tissue heating. Scientific Research of the Institute of Mathematics and Computer Science, 1(10), 11 – 20.

31. Filipoiu F., Bogdan A.I., & Carstea I.M. (2010). Computer-aided analysis of the heat transfer in skin tissue. Proceedings of the 3rd WSEAS International Conference on Finite Differences – Finite Elements – Finite Volumes – Boundary Elements, 53 –59.

32. Carstea D., Carstea I., & Carstea I.M. (2011). Interdisciplinarity in computer-aided analysis of thermal therapies. WSEAS Transactions on Systems and Control, 6(4), 115 – 124.

33. Deng Z.S., & Liu J. (2005). Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties. Cryobiology, 50, 183 – 192.

34. Lim H.L., & Gunasekaran V. (2011). Mathematical simulation of heat distribution during cryosurgery.

35. COMSOL Multiphysics User’s Guide (2018). COMSOLAB, 710 p.

How to Cite

Kobylianskyi, R., Kobylianska, A., & Fedoriv, R. (2024). Computer simulation of temperature distributions in the human heart during cryoablation. Journal of Thermoelectricity, (3), 25–35. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/163

Most read articles by the same author(s)

1 2 3 > >>