Equipment for determining the thermal conductivity of thermoelectric materials and the thermal resistance of contact structures using the absolute method

Authors

  • V.V. Lysko 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0001-7994-6795
  • V.V. Razinkov Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str, Chernivtsi, 58029, Ukraine
  • M.V. Havryliuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0003-3207-2917

Keywords:

thermal contact resistance, thermal conductivity, measurement, thermoelectric energy converters, absolute method

Abstract

The paper presents a methodology for determining the thermal resistance of contact structures in thermoelectric energy converters based on the absolute method of thermal conductivity measurement. A modified design of the "ALTEC-10001" equipment, developed at the Institute of Thermoelectricity (Ukraine), is described for implementing this methodology. An example of research results on the thermal resistance of a contact structure consisting of a thermoelectric material with an anti-diffusion nickel coating, a copper plate, and a ceramic plate is provided. Bibl. 19, Fig. 6, Tab. 1.

References

1. T. Tritt. (2000). Recent Trends in Thermoelectric Materials Research, Part Two (Semiconductors and Semimetals, Volume 70). Academic Press. ISBN-13: 978-0127521794.

2. Rowe, D. M. (2006). Thermoelectrics Handbook: Macro to Nano (1st ed.). CRC Press. https://doi.org/10.1201/9781420038903.

3. Vikhor, L. M., Anatychuk, L. I., & Gorskyi, P. V. (2019). Electrical resistance of metal contact to Bi2Te3 based thermoelectric legs. Journal of Applied Physics, 126, 164503-1 – 164503-8.

4. Anatychuk, L. I., Vikhor, L. M., & Mitskaniuk, N. V. (2019). Contact resistance due to potential barrier at thermoelectric material–metal boundary. Journal of Thermoelectricity, 4, 74-88.

5. Vikhor, L., & Kotsur, M. (2023). Evaluation of efficiency for miniscale thermoelectric converter under the influence of electrical and thermal resistance of contacts. Energies, 16, 4082-1 - 22. https://doi.org/10.3390/en16104082.

6. Vikhor, L. M., Gorskyi, P. V., & Lysko, V. V. (2022). Methods for measuring contact resistances of “metal – thermoelectric material” structures (part 1). Journal of Thermoelectricity, 2, 5-24.

7. Vikhor, L. M., Gorskyi, P. V., & Lysko, V. V. (2022). Methods for measuring contact resistances of “metal – thermoelectric material” structures (part 2). Journal of Thermoelectricity, 3-4, 5-17.

8. ASTM. (2009). Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique E1225–09.

9. McWaid, T., & Marshall, E. (1992). Thermal contact resistance across pressed metal contacts in a vacuum environment. International Journal of Heat and Mass Transfer, 35(11), 2911-2920.

10. Anatychuk, L. I., Pervozvansky, S. V., & Razinkov, V. V. (1993). Proceedings of the 12th International Conference on Thermoelectrics (Japan), 553–564.

11. Lysko, V. V., & Strusovskyi, K. I. (2024). Measuring the thermal resistance of a “metal-thermoelectric material” contact structure using a comprehensive absolute method for determining parameters of thermoelectric materials. Journal of Thermoelectricity, 1-2.

12. Anatychuk, L. I., Lysko, V. V., & Havryliuk, M. V. (2018). Ways for quality improvement in the measurement of thermoelectric material properties by the absolute method. Journal of Thermoelectricity, 2, 90 – 100.

13. Anatychuk, L. I., Havryliuk, M. V., Lysko, V. V., & Tiumentsev, V. A. (2018). Automation and computerization of measurements of thermoelectric parameters of materials. Journal of Thermoelectricity, 3, 80–100.

14. Anatychuk, L. I., & Lysko, V. V. (2021). Determination of the temperature dependences of thermoelectric parameters of materials used in generator thermoelectric modules with a rise in temperature difference. Journal of Thermoelectricity, 2, 71 – 78.

15. Anatychuk, L. I., & Lysko, V. V. (2021). Method for determining the thermoelectric parameters of materials forming part of thermoelectric cooling modules. Journal of Thermoelectricity, 3, 71 – 82.

16. Anatychuk, L. I., & Lysko, V. V. (2012). Investigation of the effect of radiation on the precision of thermal conductivity measurement by the absolute method. Journal of Thermoelectricity, 1, 65–73.

17. COMSOL Multiphysics. (2021). v. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden.

18. Huebner, K. H., Dewhirst, D. L., Smith, D. E., & Byrom, T. G. (2001). The Finite Element Method for Engineers (4th ed.). Wiley-Interscience. ISBN: 978-0-471-37078-9.

19. Anatychuk, L. I., Lysko, V. V., Zaparov, S. F., & Krechun, M. M. (2022). Methods and equipment for the preparation of thermoelectric material samples for measuring their properties by the absolute method. Journal of Thermoelectricity, 3-4, 31–42.

How to Cite

Lysko, V., Razinkov, V., & Havryliuk, M. (2024). Equipment for determining the thermal conductivity of thermoelectric materials and the thermal resistance of contact structures using the absolute method. Journal of Thermoelectricity, (3), 53–63. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/165

Issue

Section

Metrology and stardardization

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.