Microcalorimetry in a Historical Aspect, State of Art and Prospects

Part 1.

Authors

  • P.D. Mykytiuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine. https://orcid.org/0009-0000-7949-4856
  • O.Yu. Mykytiuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Bukovinian State Medical University, 2 Theater Square, Chernivtsi, 58002, Ukraine. https://orcid.org/0000-0001-9365-4836
  • O.P. Mykytiuk Bukovinian State Medical University, 2 Theater Square, Chernivtsi, 58002, Ukraine. https://orcid.org/0000-0001-8264-9433

DOI:

https://doi.org/10.63527/1607-8829-2025-2-60-84

Keywords:

microcalorimetry, types of calorimeters, characteristics of calorimeters, application of calorimeters

Abstract

This article scrutinizes the development of calorimetry since the 17th century on. It shows how calorimetry methods changed depending on the acquisition of new knowledge about the nature of heat and thermal processes. The influence of the industrial revolution on the development of calorimetric methods is reflected. The achievements of microcalorimetry in the 20th century and at this stage are demonstrated. The main applied directions of practical use of microcalorimeters are shown. A prospect of possible promising achievements in the field of microcalorimeters and an analysis of the ways to achieve them is made.

References

1. Lavoisier, A. L., & De Laplace, P. S. (1780). Memoire sur le chaleur. Memoires de l’Académie des Sciences, 355–408. https://catalog.library.vanderbilt.edu/discovery/fulldisplay/alma991015206499703276/01VAN_INST:vanui

2. Quoi de neuf depuis la calorimétrie de Lavoisier et de Berthelot? (2019). L’ACTUALITÉ CHIMIQUE, 441, Juin. https://new.societechimiquedefrance.fr/numero/quoi-de-neuf-depuis-la-calorimetrie-de-lavoisier-et-de-berthelot-p15-n441/

3. Joule, J. P. (1843). On the calorific effects of magnetic electricity and on the mechanical value of heat. Philosophical Magazine, 23, 263–276, 347–355, 435–443. https://www.abebooks.fr/calorific-effects-magneto-electricity-mechanical-value-heat/31374983144/bd

4. Berthelot, M. (1879). Essai de mécanique chimique fondée sur la Thermochimie, I. Calorimetrie. Dunod. https://gallica.bnf.fr/ark:/12148/bpt6k903010.texteImage

5. Médard, L., & Tachoire, H. (1994). Histoire de la Thermochimie. Publications de l’Université de Provence, pp. 209–211. https://doi.org/10.1006/jcht.1995.0110

6. Świętosławski, W. (1946). Microcalorimetry. Reinhold Publishing Corporation, p. 199. https://www.google.com.ua/books/edition/Microcalorimetry/r8ggAAAAMAAJ?hl=uk&gbpv=0&bsq=inauthor:%22Wojciech%20%C5%9Awi%C4%99tos%C5%82awski%22

7. Kawakami, M. (1927). Die Mischungswärme von Metallen. Zeitschrift für anorganische Chemie, 167(1), 345–363. https://doi.org/10.1002/ZAAC.19271670128

8. Kubaschewski, O., & Walter, A. (1939). Ein Adiabatisches Hochtemperaturcalorimeter zur Bestimmung der bei der Legierungsbildung auftretenden Wärmetönungen. Zeitschrift für Elektrochemie, 45(8), 630–636. https://www.periodicos.capes.gov.br/index.php/acervo/buscador.html?task=detalhes&id=W1957172836

9. Boyer, C. B. (1943). History of the measurement of heat I. Thermometry and calorimetry. The Scientific Monthly, 57(5), 442–452. http://www.jstor.org/stable/18161

10. Calvet, E., & Prat, H. (1956). Microcalorimétrie; applications physico-chimiques et biologiques. Masson & Cie. https://odebuplus.univ-poitiers.fr/discovery/fulldisplay?docid=alma991000749359706171&context=L&vid=33UDP_INST:33UDP&lang=fr&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=Everything&query=sub,exact,%20Calorimetry%20,AND&mode=advanced&offset=0

11. Calvet, E., & Prat, H. (1963). Recent progress in microcalorimetry (H. A. Skinner, Ed.). The MacMillan Co. https://shop.elsevier.com/books/recent-progress-in-microcalorimetry/calvet/978-0-08-010032-6

12. Kleppa, O. J. (1955). A thermodynamic study of liquid metallic solutions. VI. Calorimetric investigations of the systems Bismuth-Lead, Cadmium-Lead, Cadmium-Tin, and Tin-Zinc. Journal of Physical Chemistry, 59, 175–181. https://pubs.acs.org/doi/10.1021/j150524a020

13. Ticknor, L. B., & Bever, M. B. (1952). Heats of solution of group IB metals in liquid tin. JOM, 4(9), 941–945. https://doi.org/10.1007/bf03397751

14. Kleppa, O. J. (1955). A thermodynamic study of liquid metallic solutions. VI. Calorimetric investigations of the systems Bismuth-Lead, Cadmium-Lead, Cadmium-Tin, and Tin-Zinc. Journal of Physical Chemistry, 59, 175–181. https://pubs.acs.org/doi/10.1021/j150526a018#citeThis

15. Darby, J. B., Jr., Kleb, R., & Kleppa, O. J. (1966). Twin liquid metal solution calorimeter. Review of Scientific Instruments, 37(2), 164–167. https://doi.org/10.1063/1.1720119

16. Wadsö, L. (1968). Design and testing of a microreaction calorimeter. Acta Chemica Scandinavica, 22, 927–937. https://doi.org/10.3891/acta.chem.scand.22-0927

17. Suurkuusk, J., & Wadsö, L. (1974). Design and testing of an improved precise drop calorimeter for the measurement of heat capacity of small samples. Journal of Chemical Thermodynamics, 6(7), 667–679. https://doi.org/10.1016/0021-9614(74)90117-7

18. Anatychuk, L. I., & Luste, O. Y. (1978). Limiting potentialities of microcalorimeters. Journal of Engineering Physics, 35, 1178–1186. https://doi.org/10.1007/BF00860381

19. Anatychuk, L. I., Demchuk, B. M., & Luste, O. J. (2003). Particularly sensitive thermoelectric microcalorimeters with eddy thermoelements. Proceedings of the 22nd International Conference on Thermoelectrics (ICT'03), IEEE, 652–654. https://doi.org/10.1109/ICT.2003.1287436

20. Wadsö, I. (1984). Microcalorimetry. In Ribeiro da Silva, M. A. V. (Ed.), Thermochemistry and Its Applications to Chemical and Biochemical Systems

21. Kleppa, O. J. (2001). Evolution and application of high-temperature reaction calorimetry at the University of Chicago from 1952 to 2000. Journal of Alloys and Compounds, 321, 153–163. https://doi.org/10.1016/S0925-8388(01)00964-1

22. Thorén, S. A., Suurkuusk, J., & Holma, B. (1989). Operation of a multichannel microcalorimetry system in the micro-submicrowatt region: Some methodological aspects. Journal of Biochemical and Biophysical Methods, 18(2), 149–156. https://doi.org/10.1016/0165-022X(89)90076-6

23. Cacciamani, G., Borzone, G., & Ferro, R. (1995). On a simple, high-temperature direct reaction calorimeter. Journal of Alloys and Compounds, 220, 106–110. https://doi.org/10.1016/0925-8388(94)06024-X

24. Wadsö, I., & Goldberg, R. N. (2001). Standards in isothermal microcalorimetry. Pure and Applied Chemistry, 73(10), 1625–1639. https://doi.org/10.1351/pac200173101625

25. Ladbury, J., & Doyle, M. (Eds.). (2004). Biocalorimetry II: Applications of calorimetry in the study of biological systems. John Wiley & Sons. https://doi.org/10.1002/0470011122

26. Lindeman, M. (2000). Microcalorimetry and the transition-edge sensor. University of California, Davis. https://books.google.com.ua/books/about/Microcalorimetry_and_the_Transition_edge.html?id=Tv1jbqar4oQC&redir_esc=y

27. Phipps, M., & Mackin, L. (2000). Application of isothermal microcalorimetry in solid-state drug development. Pharmaceutical Science & Technology Today, 3(1), 9–17. https://doi.org/10.1016/S1461-5347(99)00227-8

28. Woo-Gwang Jung, & Mira Yoo. (2003). Kleppa type calorimeter for the study of high-temperature processes. Journal of Chemical Thermodynamics, 35(12), 2011–2020. https://doi.org/10.1016/j.jct.2003.08.001

29. Lindeman, M., Bandler, S., Brekosky, R., Chervenak, J., Figueroa-Feliciano, E., Finkbeiner, F., Li, M., & Kilbourne, C. (2004). Impedance measurements and modeling of a transition-edge-sensor calorimeter. Review of Scientific Instruments, 75, 1283–1289. https://doi.org/10.1063/1.1711144

30. Bastos, M. (Ed.). (2016). Biocalorimetry: Foundations and contemporary approaches. Taylor & Francis Group, LLC.

31. Schick, C., & Androsch, R. (2018). Chapter 2 - Fast scanning chip calorimetry. In Handbook of Thermal Analysis and Calorimetry, Volume 6 (pp. 47–102). https://doi.org/10.1016/B978-0-444-64062-8.00018-8

32. Llewellyn, P., Grillet, Y., & Rouquerol, J. (1994). Effect of T(III) zoning in MFI-type zeolites on the adsorption isotherm and differential enthalpies of adsorption at 77 K. Langmuir, 10. https://doi.org/10.1021/la00014a038

33. Giordano, F., Denoyel, R., & Rouquerol, J. (1993). Influence of porosity on the adsorption of a non-ionic surfactant on silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 71, 293–298. https://doi.org/10.1016/0927-7757(93)80044-F

34. The ATLAS Detector. https://atlas.cern/Discover/Detector

35. Höhne, G. W. H., Hemminger, W. F., & Flammersheim, H.-J. (2003). Differential scanning calorimetry. Springer. https://link.springer.com/book/10.1007/978-3-662-06710-9

36. Médard, L., & Tachoire, H. (1994). Histoire de la Thermochimie. Publications de l’Université de Provence. https://doi.org/10.4000/books.pup.1747

37. Rouquerol, J., Rouquerol, F., Llewellyn, P., & Denoyel, R. (2015). Calorimétrie: Principes, appareils et utilisation. Techniques d'analyse. https://doi.org/10.51257/a-v1-p1202

38. Soritz, S., Sommitsch, A., Irndorfer, S., Brouczek, D., Schwentenwein, M., Priestley, I. J. G., Iosub, A. V., Krieger, J. P., & Gruber-Woelfler, H. (2024). Thermokinetic analyses of metal-sensitive reactions in a ceramic flow calorimeter. Reaction Chemistry & Engineering, 9(7), 1805–1815. https://doi.org/10.1039/D4RE00014E

39. Baldan, M., Blauth, S., Bošković, D., Leithäuser, C., Mendl, A., Radulescu, L., Schwarzer, M., Wegner, H., & Bortz, M. (2024). Continuous synthesis of diazo acetonitrile: From experiments to physical and grey‐box modeling. Chemie Ingenieur Technik, 96(5), 658–670. https://doi.org/10.1002/cite.202300191

40. Mateo Rosado, Y., Ledoux, A., Balland, L., & Polaert, I. (2024). Continuous flow microcalorimetry as a tool for studying catalytic hydrogenations: Application to CO₂ methanation. Journal of Thermal Analysis and Calorimetry, 149(6), 2631–2642. https://doi.org/10.1007/s10973-023-12849-z

41. Scharrer, M., Bonatti, L., Geraci, T., Ushakov, S. V., Majzlan, J., Bustamante, M., Kojitani, H., Guo, X., Xu, H., Zhang, L., Lilova, K., Hayun, S., Subramani, T., & Navrotsky, A. (2025). The joys and jitters of high‐temperature calorimetry. Journal of the American Ceramic Society, 108(6). https://doi.org/10.1111/jace.20381

42. van Herwaarden, S. (1999). Calorimetry measurement. CRC Press LLC. https://dsp-book.narod.ru/MISH/CH36.PDF

43. Clarke, J., Farr, D., Wang, J., Ingram, H., Chapman, C., Field, H., Breen, C. P., Gulotty, E. M., Mason, S., Russell, G., Williams, O., Kumta, S., Britto, J., & Ping, L.-J. (2025). Thermally hazardous 1,3-dioxolane coupling reaction required for a pharmaceutical candidate starting material, made safer by employing process safety data as key design of experiments output variables. Organic Process Research & Development, 29(3), 836–845. https://doi.org/10.1021/acs.oprd.4c00519

44. Claveria-Gimeno, R., Vega, S., Abian, O., & Velazquez-Campoy, A. (2019). Tinkering with binding polynomials in isothermal titration calorimetry. Methods in Molecular Biology, 1964, 185–213. https://doi.org/10.1007/978-1-4939-9179-2_14

45. Mosebi, S. (2022). Calorimetry to quantify protein-ligand binding. Applications of Calorimetry, IntechOpen. http://dx.doi.org/10.5772/intechopen.102959

46. Migliore, R., Zavalishin, M. N., Gamov, G. A., et al. (2022). Isothermal titration calorimetry investigation of the interactions between vitamin B6-derived hydrazones and bovine and human serum albumin. Journal of Thermal Analysis and Calorimetry, 147, 5483–5490. https://doi.org/10.1007/s10973-022-11200-2

47. Migliore, R., Biver, T., Barone, G., & Sgarlata, C. (2022). Quantitative analysis of the interactions of metal complexes and amphiphilic systems: Calorimetric, spectroscopic, and theoretical aspects. Biomolecules, 12, 408. https://doi.org/10.3390/biom12030408

48. Quilty, C. D., West, P. J., Li, W., Dunkin, M. R., Wheeler, G. P., Ehrlich, S., Ma, L., Jaye, C., Fischer, D. A., Takeuchi, E. S., Takeuchi, K. J., Bock, D. C., & Marschilok, A. C. (2022). Multimodal electrochemistry coupled microcalorimetric and X-ray probing of the capacity fade mechanisms of nickel-rich NMC – progress and outlook. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D1CP05254C

49. Yi, F., & LaVan, D. A. (2019). Nanocalorimetry: Exploring materials faster and smaller. Applied Physics Reviews, 6(3), 031302. https://doi.org/10.1063/1.5098297

50. Diulus, J. T., Corbella, C., & Yi, F. (2025). Nanocalorimetry for plasma metrology relevant to semiconductor fabrication. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 43(2). https://doi.org/10.1116/6.0004294

Downloads

How to Cite

Mykytiuk, P., Mykytiuk, O., & Mykytiuk, O. (2025). Microcalorimetry in a Historical Aspect, State of Art and Prospects: Part 1. Journal of Thermoelectricity, (2), 60–84. https://doi.org/10.63527/1607-8829-2025-2-60-84

Issue

Section

Metrology and standardization

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 

You may also start an advanced similarity search for this article.