Optimization of Properties of a New Thermoelectric Material Obtained by Doping of n-Ti1-xNbxNiSn Semiconductor with Sb Atoms

Authors

DOI:

https://doi.org/10.63527/1607-8829-2025-4-41-52

Keywords:

thermoelectric material, semiconductor, electronic structure, electrical resistivity, thermopower coefficient, thermoelectric figure of merit

Abstract

The structural, electrokinetic, and energetic properties of the new thermoelectric material n-Ti1-xNbxNiSn1-ySby, х=0.01–0.02, у=0–0.03, obtained by doping the semiconductor n-Ti1-xNbxNiSn with Sb atoms (4d105s25p3) by replacing Sn atoms (4d105s25p2) were investigated. The nature of the generated energy states and mechanisms of electrical conductivity were established. It was shown that at varying concentrations of Sb atoms in the crystallographic position 4c, structural defects of a donor nature are generated, and the corresponding energy states εDSb(Sn) are generated in the band gap εg of the semiconductor. Optimization of the properties of the n-Ti1-xNbxNiSn solid solution by doping the n-type semiconductor with a donor impurity leads to a decrease in the compensation degree and meets the conditions for achieving maximum efficiency of thermal energy conversion into electrical energy. A new semiconductor thermoelectric material, Ti1-xNbxNiSn1-ySby, with high thermoelectric power values, was obtained.

References

1. Romaka V.A., Stadnyk Yu.V., Romaka L.P., Horyn A.M., Romaka V.V., Haraniuk P.I. (2025). Research of Thermoelectric Material Ti1-xNbxNiSn, Journal of Thermoelectricity, №1, 5–15.

DOI: 10.63527/1607-8829-2025-1-5-15.

2. Romaka V.A., Rogl P., Romaka V.V., Hlil E.K., Stadnyk Yu.V., Budgerak S.M. (2011). Features of a priori Heavy Doping of the n-TiNiSn Intermetallic Semiconductor. Semiconductors, 45 (7), 850–856. DOI: https://doi.org/10.1134/S1063782611070190.

3. Anatychuk L.I. (1998). Thermoelectricity. Physics of thermoelectricity, Institute of Thermoelectricity, Kyiv, Chernivtsi, Vol. 1, 376 p.

4. Romaka V.A., Fruchart D., Stadnyk Yu.V., Tobola J., Gorelenko Yu.K., Shelyapina M.G., Romaka L.P., Chekurin V.F. (2006). Conditions for attaining the maximum values of thermoelectric power in intermetallic semiconductors of the MgAgAs structural type. Semiconductors, 40 (11), 1275–1281. DOI: https://doi.org/10.1134/S1063782606110054.

5. Akselrud L., Grin Yu. (2014). WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr., 47, 803805. https://doi.org/10.1107/S1600576714001058.

6. Schruter M., Ebert H., Akai H., Entel P., Hoffmann E., Reddy G.G. (1995). First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Phys. Rev. B, 52, 188-209. DOI: https://doi.org/10.1103/PhysRevB.52.188.

7. Moruzzi V.L., Janak J.F., Williams A.R. (1978). Calculated electronic properties of metals. Pergamon Press, NY, 348 р. DOI: https://doi.org/10.1016/B978-0-08-022705-4.50002-8.

8. Marazza R., Ferro R., Rambaldi G. (1975). Some phases in ternary alloys of titanium, zirconium, and hafnium, with a MgAgAs or AlCu2Mn type structure. J. Less-Common Met., 39, 341-345. (DOI: https://doi.org/10.1016/0022-5088(75)90207-6).

9. Mott N.F. and Davis E.A. (2012). Electron processes in non-crystalline materials. Oxford, Clarendon Press, 590 p. DOI: https://doi.org/10.1002/crat.19720070420.

10. Shklovskii B.I. and Efros A.L. (1984). Electronic properties of doped semiconductors. Berlin, Heidelberg, NY, Tokyo, Springer-Verlag, 388 p. DOI: 10.1007/978-3-662-02403-4.

11. Romaka V.A., Rogl P., Stadnyk Yu.V., Hlil E.K., Romaka V.V., Horyn A.M. (2012). Features of Conductivity of the Intermetallic Semiconductor n-ZrNiSn Heavily Doped with a Bi Donor Impurity, Semiconductors, 46 (7), 887–893. DOI: 10.1134/S1063782612070172.

Downloads

How to Cite

Romaka, V., Stadnyk, Y., Romaka, L., Horyn, A., & Haraniuk, P. (2025). Optimization of Properties of a New Thermoelectric Material Obtained by Doping of n-Ti1-xNbxNiSn Semiconductor with Sb Atoms. Journal of Thermoelectricity, (4), 41–52. https://doi.org/10.63527/1607-8829-2025-4-41-52

Issue

Section

Materials research

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.