Експериментальні дослідження властивостей нового термоелектричного матеріалу Tm1-xVxNiSb

Автор(и)

  • В.А. Ромака Національний університет “Львівська політехніка”, вул. С. Бандери, 12, Львів, 79013, Україна
  • Ю.В. Стадник Львівський національний університет ім. І. Франка, вул. Кирила і Мефодія, 6, Львів, 79005, Україна
  • Л.П. Ромака Львівський національний університет ім. І. Франка, вул. Кирила і Мефодія, 6, Львів, 79005, Україна
  • П.Ю. Демченко Львівський національний університет ім. І. Франка, вул. Кирила і Мефодія, 6, Львів, 79005, Україна
  • А.М. Горинь Львівський національний університет ім. І. Франка, вул. Кирила і Мефодія, 6, Львів, 79005, Україна
  • Т.І. Луковський Національний університет “Львівська політехніка”, вул. С. Бандери, 12, Львів, 79013, Україна

Ключові слова:

електронна структура, електроопір, коефіцієнт термоЕРС

Анотація

Досліджено структурні, кінетичні та енергетичні властивості термоелектричного матеріалу Tm1-xVxNiSb у діапазонах: Т = 80 – 400 К, х = 0 – 0.10. Показано, що атоми V можуть одночасно у різних співвідношеннях займати різні кристалографічні позиції, генеруючи дефекти акцепторної та донорної природи. Це породжує у забороненій зоні εg Tm1-xVxNiSb відповідні акцепторні та донорні стани. Встановлено механізм формування у Tm1-xVxNiSb двох сортів акцепторних станів з різною глибиною залягання: дрібні акцептори, породжена вакансіями у структурі фази пів-Гейслера TmNiSb, та глибокі акцептори, утворені дефектами при заміщенні у позиції 4с атомів Ni на V. Співвідношення концентрацій генерованих дефектів визначає положення рівня Фермі εF та механізми провідності. Досліджений твердий розчин Tm1-xVxNiSb є перспективним термоелектричним матеріалом.

The structural, kinetic, and energy properties of the Tm1-xVxNiSb thermoelectric material were studied in the ranges: T=80–400 K, x=0–0.10. It is shown that V atoms can simultaneously occupy different crystallographic positions in different ratios, generating defects of acceptor and donor nature. This gives rise to the corresponding acceptor and donor states in the bandgap εg Tm1-xVxNiSb. The mechanism of formation in Tm1-xVxNiSb of two types of acceptor states with different depth of occurrence was established: shallow acceptors generated by vacancies in the structure of half-Heusler phase TmNiSb, and deep acceptors formed by defects when Ni atoms are replaced by V in the 4c position. The ratio of the concentrations of generated defects determines the position of the Fermi level εF and the conduction mechanisms. The investigated Tm1-xVxNiSb solid solution is a promising thermoelectric material. Bibl. 12, Fig. 7.

Посилання

Romaka V. A., Stadnyk Yu. V., Krayovskyy V. Ya., Romaka L. P., Guk O. P., Romaka V. V., Mykyuchuk M. M., Horyn A. M. (2020). Novitni termochutlyvi materialy ta peretvoriuvachi temperatury [New thermosensitive materials and temperature converters]. Lviv, Lvivska Polytechnika [in Ukrainian].

Anatychuk L. I. (1979). Termoelementy i termoelectricheskiie ustroistva. Spravochnik. [Thermoelements and thermoelectric devices. Reference book]. Kyiv: Naukova dumka [in Russian].

Hartjes K., Jeitschko W. (1995). Crystal structure and magnetic properties of the lanthanoid nickel antimonides LnNiSb (Ln = La–Nd, Sm, Gd–Tm, Lu). Journal of Alloys and Compounds, 226, 81 - 86. DOI: https://doi.org/10.1016/0925-8388(95)01573-6.

Karla I., Pierre J., Skolozdra R. V. (1998). Physical properties and giant magnetoresistance in RNiSb compounds. Journal of Alloys and Compounds, 265, 42 - 48. DOI: https://doi.org/10.1016/S0925-8388(97)00419-2.

Romaka V.V., Romaka L., Horyn A., Stadnyk Yu. (2021). Experimental and theoretical investigation of the Y-Ni-Sb and Tm-Ni-Sb systems. Journal of Alloys and Compounds, 855, 157334 – 12. DOI: https://doi.org/10.1016/j.jallcom.2020.157334.

Romaka V. V., Romaka V. А., Stadnyk Yu. V., Romaka L. P., Plevachuk Y. O., Pashkevich V. Z., Haraniuk P. I. Horyn А. (2023). Features of the generation of the energy states in the semiconductor Lu1-xVxNiSb. Ukr. J. Phys., 68 (№ 4), 274  283. DOI: https://doi.org/10.15407/ujpe68.4.274.

Romaka V. А., Stadnyk Yu., Romaka L., Horyn А., Pashkevich V., Nychyporuk H., Garanyuk P. (2022). Investigation of Thermoelectric Material Based on Lu1-xZrxNiSb Solid Solution. I. Experimental Results. J. Phys. and Chem. Sol. State, 23, 235241. DOI: 10.15330/pcss.23.2.235-241.

Romaka V. V., Romaka V. А., Stadnyk Yu. V., Romaka L. P., Demchenko P. Yu., Pashkevich V. Z., Horyn А. M. (2022). Features of mechanisms of electrical conductivity in semiconductive solid solution Lu1-xScxNiSb. Ukr. J. Phys., 67 (№ 5), 370  379. DOI: https://doi.org/10.15407/ujpe67.5.370.

Roisnel T., Rodriguez-Carvajal J. (2001). WinPLOTR: a windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. EPDIC7 378 - 381, 118 – 123. DOI: https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.

Shklovskii B. I. and Efros A. L. (1984). Electronic properties of doped semiconductors NY: Springer; (1979) Moscow: Nauka. DOI: https://doi.org/10.1002/crat.19720070420.

Babak V. P., Babak S. V., Myslovych M. V., Zaporozhets A. O., Zvaritch V. M. (2020). Technical provision of diagnostic systems. Studies in Systems, Decision and Control, 281, 91 – 133. DOI: https://doi.org/10.1007/978-3-030-44443-3_4.

Mott N. F., Davis E. A. (1979). Electron processes in non-crystalline materials. Oxford: Clarendon Press. DOI: 10.1007/978-3-662-02403-4.

##submission.downloads##

Як цитувати

Ромака, В., Стадник, Ю., Ромака, Л., Демченко, П., Горинь, А., & Луковський, Т. (2024). Експериментальні дослідження властивостей нового термоелектричного матеріалу Tm1-xVxNiSb. Термоелектрика, (1), 33–43. вилучено із http://jte.ite.cv.ua/index.php/jt/article/view/4

Номер

Розділ

Матеріалознавство

Статті цього автора (авторів), які найбільше читають

Схожі статті

<< < 1 2 3 

Ви також можете розпочати розширений пошук схожих статей для цієї статті.