Method for taking into account the phase transition in biological tissue during computer-aided simulation of cryodestruction process

Authors

  • L.I. Anatychuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • R.V. Fedoriv Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynsky str., 58000, Chernivtsi, Ukraine

Keywords:

biological tissue, temperature exposure, cryodestruction, phase transition, computer simulation

Abstract

The paper presents a method for taking into account the phase transition in biological tissue during computer-aided simulation of cryodestruction process. The physical, mathematical and computer models of biological tissue are constructed with regard to thermophysical processes, blood circulation, heat transfer, metabolic processes and the phase transition. As an example, we consider the case when there is a cooling element on the surface of biological tissue at a temperature of -50 ° C. The temperature and heat flux distributions in biological tissue are determined in cooling mode. The results obtained make it possible to predict the depth of freezing of biological tissue at a given temperature exposure. Bibl. 28, Fig. 7, Table. 1.

References

1. Anatychuk L.I. (1979). Termoelementy i termoelektricheskiie ustroistva. Spravochnik [Thermoelements and thermoelectric devices. Reference book]. Kyiv: Naukova Dumka [in Russian].

2. Kolenko E.A. (1967). Termoelektricheskiie okhlazhdaiushchiie pribory [Thermoelectric cooling devices. 2nd ed. Leningrad: Nauka [in Russian].

3. Anatychuk L.I., Denisenko O.I., Kobylianskyi R.R., Kadeniuk T.Ya., Perepichka M.P. (2017). Modern methods of cryotherapy in dermatological practice. Klinichna ta eksperymental’na patologiia - Clinical and experimental pathology, XVІ, (59), 150-156.

4. Denkov V. (1988). At the edge of life. Moscow: Znaniie [Russian transl.]

5. Maruyama S., Nakagawa K., Takeda H. (2008). The flexible cryoprobe using Peltier effect for heat transfer control. Journal of Biomechanical Science and Engineering, 138-150.

6. Kochenov V.I. (2000). Kriokhirurgicheskaia profilakticheskaia onkologiia [Cryosurgical preventive oncology]. Nizhnii Novgorod [in Russian].

7. Kochenov V.I. (2003). Kriologicheskaia profilakticheskaia onkologiia: kratkoie uchebnoie I metodicheskooie posibiie dlia vrachei i studentov [Cryological preventive oncology: brief educational and methodological manual for doctors and students]. 2nd revised ed. Nizhnii Novgorod [in Russian].

8. Kochenov V.I. (1982). Adhesive effect in cryosurgery. Abstract in the International Abstract Journal, IV, 8.

9. Moskalyk, I.A., Manyk О.М. (2013). On the use of thermoelectric cooling in cryodestruction practice. J.Thermoelectricity, 6, 84-92.

10. Anatychuk L.I., Denisenko О.І., Kobylianskyi R.R., Kadeniuk T.Ya. (2015). On the use of thermoelectric cooling in dermatology and cosmetology. J.Thermoelectricity, 3, 57-71.

11. Moskalyk І.А. (2015). On the use of thermoelectric devices in cryosurgery. Physics and Chemistry of the Solid State, 4, 742-746.

12. Kobylianskyi R.R., Kadeniuk T.Ya. (2016) Pro perspektyvy vykorystannia termoelektryky dlia likuvannia zakhvoriuvan shkiry kholodom [On the prospects of using thermoelectricity for treatment of skin diseases with cold]. Naukovy visnyk Chernivetskogo universitetu: zbirnyk naukovykh ptrats. Fizyka. Elektronika - Scientific Bulletin of Chernivtsi University: Collection of Scientific Papers. Physics. Electronics, 5, 1, 67 – 72 [in Ukrainian].

13. Anatychuk L.I., Vikhor L.M., Kotsur M.P., Kobylianskyi R.R., Kadeniuk T.Ya. (2016). Optimal control of time dependence of cooling temperature in thermoelectric devices. J.Thermoelectricity, 5, Р. 5-11.

14. Anatychuk L.I., Kobylianskyi R.R., Kadeniuk T.Ya. (2017). Computer simulation of local thermal effect on human skin. J.Thermoelectricity, 1, 69-79.

15. Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadeniuk T.Ya. (2017). Computer simulation and optimization of the dynamic operating modes of thermoelectric device for treatment of skin diseases. J.Thermoelectricity, 2, 44-57.

16. Anatychuk L.I.., Vikhor L.M., Kobylianskyi R.R., Kadeniuk T.Ya., Zvarich O.V. (2017). Computer simulation and optimization of the dynamic operating modes of thermoelectric device for reflexotherapy. J.Thermoelectricity, 3, 68-78.

17. Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadeniuk T.Ya. (2017). Computer simulation and optimization of the dynamic operating modes of thermoelectric device for cryodestruction. Physics and Chemistry of the Solid State, 18 (4), 455-459.

18. Anatychuk L., Vikhor L, Kotsur M., Kobylianskyi R., Kadeniuk T. (2018). Optimal control of time dependence of temperature in thermoelectric devices for medical purposes. International Journal of Thermophysics 39:108. https://doi.org/10.1007/s10765-018-2430-z.

19. Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadeniuk T.Ya. (2018). Kompiuterne modeliuvannia lokalnogo temperaturenogo vplyvu na shkiru liudyny v dynamichnomu rezhymi [Computer simulation of local temperature effect on human skin in the dynamic mode]. Visnyk Natsionalnogo universitetu “Lvivska Politechnica”. Physical and mathematical sciences – Bulletin of National university “Lvivska Politechnica.” Physical and mathematical sciences. Lviv: Lvivska Politechnical Publ., 898, 78-82.

20. Pennes H.H. (1948). Analysis of tissue and arterial blood temperatures in the resting forearm

J. Appl. Physiol. 1(2), 93 – 122.

21. Jiang S.C., Ma N., Li H.J. and Zhang X.X. (2002). Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns 28, 713 – 717.

22. Cetingul M.P., Herman C. (2008). Identification of skin lesions from the transient thermal response using infrared imaging technique. IEEE, 1219 – 1222.

23. Ciesielski M., Mochnacki B. and Szopa R. (2011). Numerical modeling of biological tissue heating. Admissible thermal dose. Scientific Research of the Institute of Mathematics and Computer Science 1 (10), 11 – 20.

24. Filipoiu Florin, Bogdan Andrei Ioan and Carstea Iulia Maria (2010). Computer-aided analysis of the heat transfer in skin tissue. Proceedings of the 3rd WSEAS Int. Conference on Finite Differences - Finite Elements - Finite Volumes - Boundary Elements, 53 – 59.

25. Carstea Daniela, Carstea Ion and Carstea Iulia Maria Carstea (2011). Interdisciplinarity in computer-aided analysis of thermal therapies. WSEAS Transactions on Systems and Control,

6 (4), 115 – 124.

26. Deng Z.S., Liu J. (2005). Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties. Cryobiology, 50, 183 192.

27. Han Liang Lim, Venmathi Gunasekaran. Mathematical modeling of heat distribution during cryosurgery // https://isn.ucsd.edu/last/courses/beng221/problems/2011/project10.pdf.

28. COMSOL Multiphysics User’s Guide (2018). COMSOLAB.

How to Cite

Anatychuk, L., Kobylianskyi, R., & Fedoriv, R. (2024). Method for taking into account the phase transition in biological tissue during computer-aided simulation of cryodestruction process. Journal of Thermoelectricity, (1), 42–54. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/104

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.