Research of the thermoelectric material Lu1-xVxNiSb: modeling of properties

Authors

  • V.A. Romaka 1National University “Lvivska Politechnika”, 12, S. Bandera Str., Lviv, 79013, Ukraine
  • Yu.V. Stadnyk 2Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine
  • L.P. Romaka 2Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine
  • Yu.O. Plevachuk 2Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine
  • V.V. Romaka 3Leibniz Institute for Solid State and Materials Research, IFW-Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
  • A.M. Horyn Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine
  • V.Z. Pashkevych National University “Lvivska Politechnika”, 12, S. Bandera Str., Lviv, 79013, Ukraine
  • A.V. Zelinskiy Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine

Keywords:

electronic structure, figure of merit of thermoelectric material, resistivity, thermopower coefficient

Abstract

The result of modeling the crystal and electronic structures, thermodynamic and kinetic properties of Lu1-xVxNiSb is establishing the nature of the generated energy states. It is shown that the semiconductor solid solution Lu1-xVxNiSb is a promising thermoelectric material, and at a temperature of Т≈620 K and a concentration of Lu0.99V0.01NiSb, the thermoelectric factor Z values reach the maximum values of ZT = 0.62. It was established that the impurity atoms of V (3d34s2), introduced into the structure of the LuNiSb compound, simultaneously occupy the crystallographic positions 4a of Lu atoms (5d16s2) and 4c of Ni atoms (3d84s2) in different ratios, generating in the band gap eg impurity donor εDV and acceptor eANi energy states. The ratio of concentrations of donors and acceptors determines the location of the Fermi level εF and the mechanisms of electrical conductivity.

References

Romaka V.V., Rogl P.F., Carlini R., Fanciulli C. (2017). Prediction of the Thermoelectric Properties of Half-Heusler Phases from the Density Functional Theory. – P. 286-323. In “Alloys and Intermetallic Compounds. From Modeling to Engineering”. Genova, Italy: CRC Press Taylor & Francis Group. International Standard Book Number–13: 978–1–4987–4143–9.

Romaka V.A., Stadnyk Yu.V., Krayovskyy V.Ya., Romaka L.P., Guk O.P., Romaka V.V., Mykyuchuk M.M., Horyn A.M. (2020). Novitni termochutlyvi materialy ta peretvoriuvachi temperatury [New thermosensitive materials and temperature converters]. Lviv: Lvivska Polytechnika [in Ukrainian]. DOI: https://opac.lpnu.ua/bib/1131184.

Hartjes K., Jeitschko W. (1995). Crystal structure and magnetic properties of the lanthanoid nickel antimonides LnNiSb (Ln=La–Nd, Sm, Gd–Tm, Lu). J. Alloys Compd., 226, 81-86. DOI: https://doi.org/10.1016/0925-8388(95)01573-6.

Anatychuk L.I. (1979). Termoelementy i termoelectricheskiie ustroistva. Spravochnik. [Thermoelements and thermoelectric devices. Reference book]. Kyiv: Naukova dumka [in Russian].

Karla I., Pierre J., Skolozdra R.V. (1998). Physical properties and giant magnetoresistance in RNiSb compounds. J. Alloys Compd., 265, 42–48. DOI: https://doi.org/10.1016/S0925-8388(97)00419-2.

Romaka V.V., Romaka L., Horyn A., Rogl P., Stadnyk Yu., Melnychenko N., Orlovskyy M., Krayovskyy V. (2016). Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems. J. Solid State Chem., 239, 145–152. https://doi.org/10.1016/j.jssc.2016.04.029).

Romaka V.V., Romaka L., Horyn A., Stadnyk Yu. (2021). Experimental and theoretical investigation of the Y–Ni–Sb and Tm–Ni–Sb systems. J. Alloys Compd., 855, 157334–12. DOI: https://doi.org/10.1016/j.jallcom.2020.157334.

Romaka V.A., Stadnyk Yu.V., Romaka L.P., Pashkevych V.Z., Romaka V.V., Horyn A.M., Demchenko P.Yu. (2021). Study of structural, thermodynamic, energy, kinetic and magnetic properties of thermoelectric material Lu1-xZrxNiSb. J. Thermoelectricity, 1, 32-48. DOI: http://jt.inst.cv.ua/jt/jt_2021_01_en.pdf.

Romaka V.A., Stadnyk Yu., Romaka L., Horyn A., Pashkevych V., Nychyporuk H., Garanyuk P. (2022). Investigation of Thermoelectric Material Based on Lu1-xZrxNiSb Solid Solution. I. Experimental Results. J. Phys. Chem. Sol. State, 23, 235-241. DOI: 10.15330/pcss.23.2.235-241.

Romaka V.A., Stadnyk Yu., Romaka L., Krayovskyy V., Нoryn A., Klyzub P., Pashkevych V. (2020). Study of structural, electrokinetic and magnetic characteristics of the Er1-xZrxNiSb Semiconductor. J.

Phys. Chem. Sol. State, 21, 689-694. DOI: 10.15330/pcss.21.4.689-694.

Wolańska I., Synoradzki K., Ciesielski K., Załęski K., Skokowski P., Kaczorowski D. (2019). Enhanced thermoelectric power factor of half-Heusler solid solution Sc1-xTmxNiSb prepared by high-pressure hightemperature sintering method. Materials Chemistry and Physics, 227, 29–35. DOI: https://doi.org/10.1016/j.matchemphys.2019.01.056.

Romaka V.V., Romaka V.A., Stadnyk Yu.V., Romaka L.P., Demchenko P.Y., Pashkevych V.Z., Horyn A.M. (2022). Features of mechanisms of electrical conductivity in semiconductive solid solution Lu1-xScxNiSb. Ukr. J. Phys., 67, 370-379. DOI: https://doi.org/10.15407/ujpe67.5.370.

Romaka V.A., Stadnyk Yu.V., Romaka V.V., Demchenko P.Yu., Romaka L.P., Pashkevych V.Z., Horyn A.M., Horpeniuk A.Ya. (2021). Investigation of properties of new thermoelectric material Lu1-xScxNiSb. J. Thermoelectricity, 2, 18–30. DOI: http://jt.inst.cv.ua/jt/jt_2021_02_en.pdf.

Romaka V.A., Stadnyk Yu., Romaka L., Krayovskyy V., Klyzub P., Pashkevych V., Нoryn A., Garanyuk P. (2021). Synthesis and Electrical Transport Properties of Er1-xScxNiSb Semiconducting Solid Solution. J. Phys. Chem. Sol. State, 22, 146–152. DOI:10.15330/pcss.22.1.146-152.

Kresse G., Hafner J. (1993). Ab initio molecular dynamics for liquid metals. Phys. Rev., B 47, 558–561.

Kresse G., Joubert D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev., B 59, 1758–1775.

Perdew J.P., Burke K., Ernzerhof M. (1976). Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 3865–8. https://doi.org/10.1103/PhysRevLett.77.3865.

Monkhorst H.J., Pack J.K. (1976). Special points for Brillouin-zone integrations. Phys. Rev., B 13, 5188–5192.

Okhotnikov K., Charpentier T., Cadars S. (2016). Supercell program: a combinatorial structure- generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals.

J. Cheminform, 8(17), 1–15.

Vinet P., Rose J.H., Jr Ferrante J.S. (1989). Universal features of the equation of state of solids. J. Phys.: Condens. Matter., 1, 1941–1964.

Gulans A., Kontur S., Meisenbichler C., Nabok D., Pavone P., Rigamonti S., Sagmeister S., Werner U., Draxl C. (2014). Exciting – a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. J. Phys.: Condens Matter., 26, 363202, 1–24.

Nag B.R. (1996). Electron Transport in Compound Semiconductors. Berlin: Springer Verlag.

Mahan G.D. and Sofo J.O. (1996). The best thermoelectric. Proc. Natl. Acad. Sci. USA, 93 7436.

Scheidemantel T.J., Ambrosch-Draxl C., Thonhauser T., Badding H.V., and Sofo J.O. (2003). Transport coefficients from first-principles calculations. Phys. Rev., B 68, 125210.

Babak V.P., Babak S.V., Myslovych M.V., Zaporozhets A.O., Zvaritch V.M. (2020). Technical provision of diagnostic systems. Studies in Systems, Decision and Control, 281, 91–133. https://doi.org/10.1007/978-3-030-44443-3_4

Issue

Section

Materials research

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.