Investigation of properties of new thermoelectric material Lu1-xScxNiSb

Authors

  • V.A. Romaka National University “Lvivska Politechnika”, 12, S. Bandera Str., Lviv, 79013, Ukraine
  • Yu.V. Stadnyk Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine
  • V.V. Romaka Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
  • P.Yu. Demchenko Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine
  • L.P. Romaka Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine
  • V.Z. Pashkevych National University “Lvivska Politechnika”, 12, S. Bandera Str., Lviv, 79013, Ukraine
  • A.M. Horyn Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv, 79005, Ukraine
  • A.Ya. Horpenyuk National University “Lvivska Politechnika”, 12, S. Bandera Str., Lviv, 79013, Ukraine

Keywords:

electronic structure, electric resistivity, Seebeck coefficient

Abstract

The crystalline and electronic structures, thermodynamic, kinetic, energy and magnetic properties of the thermoelectric material Lu1-xScxNiSb at temperatures T = 80 – 400 K have been studied. Depending on the concentration of the alloying component in the solid solution Lu1-xScxNiSb, different mechanisms of Sc atoms entering the semiconductor matrix have been established, which leads to different rates of generation of structural defects of acceptor and donor nature. The ratio of the concentrations of existing defects of donor and acceptor nature determines the position of the Fermi level εF and the conduction mechanisms in Lu1-xScxNiSb. The investigated solid solution Lu1-xScxNiSb is a promising thermoelectric material. Bibl. 18, Fig. 8.

References

Karla I., Pierre J., Skolozdra R.V. (1998). Physical properties and giant magnetoresistance in RNiSb compounds. J. Alloys Compd., 265, 42–48.

Romaka V.V., Romaka L., Horyn A., Rogl P., Stadnyk Yu., Melnychenko N., Orlovskyy M., Krayovskyy V. (2016). Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems. J. Solid State Chem., 239, 145–152.

Wolańska I., Synoradzki K., Ciesielski K., Załęski K., Skokowski P., Kaczorowski D. (2019). Enhanced thermoelectric power factor of half-Heusler solid solution Sc1-xTmxNiSb prepared by high-pressure high-temperature sintering method. Materials Chemistry and Physics, 227, 29–35.

Romaka V.A, Stadnyk Yu., Romaka L., Krayovskyy V., Нoryn A., Klyzub P., Pashkevych V. (2020). Study of structural, electrokinetic and magnetic characteristics of the Er1-xZrxNiSb Semiconductor. J. Phys. Chem. Sol. State, 21(4), 689-694.

Romaka V.A., Stadnyk Yu.V., Romaka L.P., Pashkevych V.Z., Romaka V.V., Horyn A.M., Demchenko P.Yu. (2021). Study of structural, thermodynamic, energy, kinetic and magnetic properties of thermoelectric material Lu1-xZrxNiSb. J. Thermoelectricity, 1, 32–50.

Romaka V.A, Stadnyk Yu., Romaka L., Krayovskyy V., Klyzub P., Pashkevych V., Нoryn A., Garanyuk P. (2021). Synthesis and Electrical Transport Properties of Er1-xScxNiSb Semiconducting Solid Solution. J. Phys. Chem. Sol. State, 22(1), 146-152.

Romaka V.V., Romaka L., Horyn A., Stadnyk Yu. (2021). Experimental and theoretical investigation of the Y–Ni–Sb and Tm–Ni–Sb systems, J. Alloys Compd., 855, 157334–12.

Anatychuk L.I. (1979). Termoelementy i termoelectricheskiie ustroistva. Spravochnik. [Thermoelements and thermoelectric devices. Reference book]. Kyiv: Naukova dumka [in Russian].

Romaka V.V., Romaka L.P., Krayovskyy V.Ya., Stadnyk Yu.V. (2015). Stanidy ridkisnozemelnykh ta perekhidnykh metaliv [Stannides of rare earth and transition metals] Lviv: Lvivska Polytechnika [in Ukrainian].

Romaka V.A., Stadnyk Yu.V., Krayovskyy V.Ya., Romaka L.P., Guk O.P., Romaka V.V., Mykyuchuk M.M., Horyn A.M. (2020). Novitni termochutlyvi materialy ta peretvoriuvachi temperatury [New thermosensitive materials and temperature converters]. Lviv, Lvivska Polytechnika [in Ukrainian].

Roisnel T., Rodriguez-Carvajal J. (2001). WinPLOTR: a windows tool for powder diffraction

patterns analysis. Mater. Sci. Forum, Proc. EPDIC7 378–381, 118–123.

Babak V.P., Shchepetov V.V. (2018). Wear resistance of amorphous-crystalline coatings with lubricants. J. Friction and Wear, 39(1), 38–43.

Akai H. (1989). Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to FCC Ni-Fe systems. J. Phys.: Condens. Matter., 1, 8045–8063.

Moruzzi V.L., Janak J.F., Williams A.R. (1978). Calculated electronic properties of metals. NY: Pergamon Press.

Savrasov S.Y. (1996). Linear-response theory and lattice dynamics: A muffin-tin-orbital approach. Phys. Rev. B, 54(23), 16470–16486.

Momma K., Izumi F. (2008). VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr., 41, 653–658.

Shklovskii B.I. and Efros A.L. (1984). Electronic properties of doped semiconductors NY: Springer; (1979) Moscow: Nauka.

Mott N.F., Davis E.A. (1979). Electron processes in non-crystalline materials. Oxford: Clarendon Press.

How to Cite

Romaka, V., Stadnyk, Y. ., Romaka, V., Demchenko, P., Romaka, L., Pashkevych, V., … Horpenyuk, A. (2024). Investigation of properties of new thermoelectric material Lu1-xScxNiSb. Journal of Thermoelectricity, (2), 18–30. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/30

Issue

Section

Materials research

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.