Computer simulation of cyclic temperature effect on the oncological neoplasm of the human skin

Authors

  • L.I. Anatychuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • R.V. Fedoriv 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine

Keywords:

temperature effect, tumor, melanoma, dynamic mode, computer simulation

Abstract

The paper presents the results of computer simulation of the temperature effect on the tumor of the human skin in a dynamic mode. The physical, mathematical and computer models of the human skin with oncological neoplasm (melanoma) were built with regard to thermophysical processes, blood circulation, heat exchange, metabolic processes and phase transition. As an example, the case is considered when a work tool is located on the tumor surface, the temperature of which changes cyclically according to a predetermined law in the temperature range [-50 ÷ +50] °C. Temperature distributions in the tumor and various layers of human skin in the cooling and heating modes have been determined. The results obtained make it possible to predict the depth of freezing and heating of biological tissue, in particular a tumor, at a given temperature effect.  Bibl. 59, Fig. 6, Tabl. 2.

References

Anatychuk L.I., Denisenko O.I., Kobylianskyi R.R., Kadeniuk T.Ya., Perepichka M.P. (2017). Suchasni metody krioterapii v dermatologichnii praktytsi [Modern cryotherapy methods in dermatological practice]. Klinichna ta Eksperymentalna Patologiia, XVІ, 1(59), 150-156 [in Ukrainian].

Anatychuk L.I., Denisenko O.I., Kobylianskyi R.R., Kadenyuk T.Ya. (2015). On the use of

thermoelectric cooling in dermatology and cosmetology. J.Thermoelectricity, 3, 57-71.

Kobylianskyi R.R., Kadenyuk T.Ya. (2016). Pro perspektyvy vykorystannia termoelektryky dlia likuvannia zakhvoriuvan’ shkiry kholodom [On the prospects of using thermoelectricity for treatment of skin diseases with cold]. Naukovy visnyk Chernivetskogo universitetu: zbirnyk naukovykh ptrats. Fizyka. Elektronika - Scientific Bulletin of Chernivtsi University: Collection of Scientific Papers. Physics. Electronics, 5, 1, 67 – 72 [in Ukrainian].

Moskalyk I.A., Manyk O.M. (2013). On the use of thermoelectric cooling in cryodestruction practice. J.Thermoelectricity, 6, 84-92.

Moskalyk I.A. (2015) Pro vykorystannia termoelektrychnykh pryladiv u kriokhirurgii [On the use of thermoelectric devices in cryosurgery]. Fizyka i khimiia tverdogo tila – Physics and Chemistry of Solid State, 4, 742-746 [in Ukrainian].

Kobylianskyi R.R., Bezpalchuk O.O., Vyhonnyi V.Yu. (2018). Pro zastosuvannia termoelektrychnoho okholodzhennia u kosmetolohii [On the use of thermoelectric cooling in cosmetology]. Fizyka i khimiia tverdogo tila – Physics and Chemistry of Solid State, 19 (4), 340-344 (DOI: 10.15330/pcss.19.4.340-344).

Kobylianskyi R.R., Manyk O.M., Vyhonnyi V.Yu. (2018). On the use of thermoelectric cooling for cryodestruction in dermatology. J.Thermoelectricity, 6, 36-46.

Shakhov V.Yu., Kochenov V.I. et al. (1983). O naibolee ratsionalnykh metodikakh kriodestruktsii zlokachestvennykh novoobrazovanii [On the most rational methods for cryodestruction of malignant neoplasms]. Voprosy onkologii- Problems in Oncology, 9, 31-37 [in Russian].

Maruyama S., Nakagawa K., Takeda H. (2008). The flexible cryoprobe using Peltier effect for heat transfer control. Journal of Biomechanical Science and Engineering, 138-150.

Kochenov V.I. (2000). Kriokhirurgicheskaia profilakticheskaia onkologiia [Cryosurgical preventive oncology]. Niznii Novgorod [in Russian].

Kochenov V.I. (2003). Kriologicheskaia profilakticheskaia onkologiia: kratkoie uchebnoie i metodicheskoie posobiie dlia vrachei i studentov [Cryological preventive oncology: a short educational and methodological guide for doctors and students]. Organization Nizhnii Novgorod Regional Oncological Association of Disabled People (Ed). 2nd revised ed. Nizhnii Novgorod [in Russian].

Kochenov V.I., Korolev Yu.V. (2003). Prosteishiie krioinstrumenty dlia ambulatornoi praktiki vracha-kriologa [The simplest cryo-instruments for the outpatient practice of a cryologist]. Meditsinskaia kriologiia – Medical Cryology, 4, 157-160. Nizgnii Novgorod [in Russian].

Kochenov V.I. (1982). Adhesive effect in cryosurgery. Abstract in the International Abstract Journal, IV, 8.

Yiu W., Basco M.T., Aruny J.E., Sumpio B.E. (2007). Cryosurgery: A review. Int. J. Angiol, 16 (1),1-6.

Paches A.I., Shental V.V., Ptukha T.P., et al. (1978). Kriogennyi metod lecheniia opukholei golovy i shei [Cryogenic treatment of head and neck tumors]. Мoscow: 1978 [in Russian].

Potapov I.I., et al. (1975). Kriokhirurgiia v otorinolaringologii [Cryosurgery in othorinolaryngology]. Moscow [in Russian].

Dragomiretskii V.D. (1987). Kriokhirurgicheskiie metody lecheniia zabolevanii ukha, gorla i nosa [Cryosurgical methods for the treatment of the diseases of ear, throat and nose]. Prakticheskaia kriomeditsina [Practical cryomedicine]. V.I.Grishchenko and B.P.Sandomirskii (Ed.). Kyiv: Zdorovia [in Russian].

Nikolaev N.I., Kochenov V.I., Tsybusov S.N., et al.(2003). Primenenie regenerativnykh effektov kriovozdeistviia v khirurgii i pri plastike barabannoi pereponki [Application of regenerative effects of cryotherapy in surgery and in the plastic of the tympanic membrane]. Meditsinskaia kriologiia – Medical Cryology, 4, 176-188. Nizgnii Novgorod [in Russian].

Alperovich B.I., Paramonova L.M., Merzlikin N.V. (1985). Kriokhirurgiia pecheni i podzheludochnoi zhelezy [Cryosurgery of the liver and pancreas]. Tomsk [in Russian].

Verkin B.I., Grishchenko V.I., Murinets-Markevich B.N., et al. (1978). Kriogennaia tekhnika v ginekologicheskoi practike [Cryogenic technique in gynecological practice]. Meditsinskaia tekhnika – Biomedical Engineering, 2, 28-32 [in Russian].

Grishchenko V.I. (1974). Gipotermiia i kriokhirurgiia v akushersnve i ginekologii [Gipothermia and cryosurgery in obstetrics and gynecology]. Moscow: Meditsina [in Russian].

Anatychuk L.I. (1979). Termoelementy i termoelektricheskiie ustroistva: spravochnik [Thermoelements and thermoelectric devices: reference book]. Kyiv: Naukova dumka [in Russian].

Kolenko E.A. (1967). Termoelektricheskiie okhlazhdaiushchiie pribory [Thermoelectric cooling devices]. 2nd ed. Leningrad: Nauka [in Russian].

Ismailov T.A. Sostoianiie i perspektivy razvitiia termoelektricheskogo priborostroieniia [The state and prospects of development of thermoelectric instrument making]. Proc. of ІІІ All-Russian Scientific and Technical Conference [in Russian].

Budrik V.V. (2010). Physical fundamentals of cryomethods in medicine. Training Manual. F.Lugnani (Ed.). L.N. Semenova (Russian transl.)

Cooper S.M. (2001). The history of cryosurgery. J. R. Soc. Med., 94, 196-201.

Whittaker D.K. (1984). Mechanisms of tissue destruction following cryosurgery. Annals of the Royal College of Surgeons of England, 66, 313-318.

Hypothermia — one of the promising cancer treatment technologies (2012). [Electronic resource]. Doctor.kz. Retrieved from: http://www.doctor.kz/health/news/2012/03/21/13006.

How can temperature help fight cancer [Electronic resource]. Oncology clinic "K-test". Retrieved from: https://www.k-test.ru/index.php?rid=4.

Perez C.A., Emami B.N., Nussbaum G. and Sapareto S. (1989). Hyperthermia. Principles and practice of radiation oncology.

Kandel E.I. (1974). Kriokhirurgia [Cryosurgery]. Moscow: Meditsina [in Russian].

Xu K.C., Korpar Nikolai, Niu L.Z. (2012). Modern cryosurgery for cancer. World Scientific Publisher.

Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2019). Method for taking into account the phase transition in biological tissue during computer-aided simulation of cryodestruction process. J.Thermoelectricity, 1, 46-58.

Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2019). Computer simulation of human skin cryodestruction process during thermoelectric cooling. J.Thermoelectricity, 2, 21-35.

Anatychuk L.I., Kobylianskyi R.R., Fedoriv R.V. (2020). Computer simulation of cyclic temperature effect on the human skin. J. Thermoelectricity, 3.

Andreozzi Assunta, Brunese Luca, Iasiello Marcello, Tucci Claudio, Vanoli Giuseppe Peter (2019). Modeling heat transfer in tumors: A review of thermal therapies. Annals of Biomedical Engineering, 47(3), 676–693. https://doi.org/10.1007/s10439-018-02177-x.

Bhowmik Arka, Repaka Ramjee (2016). Estimation of growth features and thermophysical properties of melanoma within 3-D human skin using genetic algorithm and simulated annealing. International Journal of Heat and Mass Transfer, 98, 81-95. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.020.

Horsfield Michael, Sarkar Ritvik, Reffsin Sam, Seog Woo Jin (2015). A computer model for evaluating the efficiency of cryosurgery for prostate cancer.

Anatychuk L.I., Vikhor L.M., Kotsur M.P., Kobylianskyi R.R., Kadeniuk T.Ya. (2016). Optimal control of time dependence of cooling temperature in thermoelectric devices. J.Thermoelectricity, 5, 5-11.

Anatychuk L.I., Kobylianskyi R.R., Kadeniuk T.Ya. (2017). Computer simulation of local thermal effect on human skin. J.Thermoelectricity, 1, 69-79.

Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadeniuk T.Ya. (2017). Computer simulation and optimization of the dynamic operating modes of thermoelectric device for treatment of skin diseases. J.Thermoelectricity, 2, 44-57.

Anatychuk L.I., Vikhor L.M., Kobylianskyi R.R., Kadeniuk T.Ya., Zvarych O.V. (2017). Computer simulation and optimization of the dynamic operating modes of thermoelctric reflexotherapy device. J.Thermoelectricity, 3, 68-78.

Anatychuk L., Vikhor L., Kotsur M., Kobylianskyi R., Kadeniuk T. (2018). Optimal control of time dependence of temperature in thermoelectric devices for medical purposes. International Journal of Thermophysics, 39, 108. https://doi.org/10.1007/s10765-018-2430-z.

Jiang S.C., Ma N., Li H.J., Zhang X.X. (2002). Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns, 28, 713-717.

Cetingul M.P., Herman C. (2008). Identification of skin lesions from the transient thermal response using infrared imaging technique. IEEE, 1219-1222.

Ciesielski M., Mochnacki B., Szopa R. (2011). Numerical modeling of biological tissue heating. Admissible thermal dose. Scientific Research of the Institute of Mathematics and Computer Science, 1(10), 11-20.

Filipoiu Florin, Bogdan Andrei Ioan Bogdan, Carstea Iulia Maria. (2010). Computer-aided analysis of the heat transfer in skin tissue. Proceedings of the 3rd WSEAS Int. Conference on Finite Differences - Finite Elements - Finite Volumes - Boundary Elements, 53-59.

Carstea Daniela, Carstea Ion, Carstea Iulia Maria (2011). Interdisciplinarity in computer-aided analysis of thermal therapies. WSEAS Transactions on Systems and Control, 6(4), 115-124.

Cetingül M.Pirtini, Herman C. (2011). Quantification of the thermal signature of a melanoma lesion. International Journal of Thermal Sciences, 50, 421e431. doi:10.1016/j.ijthermalsci.2010.10.019.

Deng Z.S., Liu J. (2005). Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties. Cryobiology, 50, 183 192.

Lim Han Liang, Gunasekaran Venmathi (2011). Mathematical modeling of heat distribution during cryosurgery. https://isn.ucsd.edu/last/courses/beng221/problems/2011/project10.pdf.

Pennes H.H. (1948). Analysis of tissue and arterial blood temperatures in the resting forearm. J. Appl. Physiol., 1 (2), 93 – 122.

Gershenwald Jeffrey E., et. al. (2017). Melanoma staging: evidence-based changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J. Clin, 67(6), 472–492. doi:10.3322/caac.21409.

Dinnes J, Deeks J.J., Grainge M.J., Chuchu N, Ferrante di Ruffano L, Matin R.N., et al. (2018). Visual inspection for diagnosing cutaneous melanoma in adults. The Cochrane Database of Systematic Reviews, 12(12): CD013194. doi:10.1002/14651858.CD013194. PMC 6492463. PMID 30521684.

Rykaczewski Konrad (2019). Modeling thermal contact resistance at the finger-object interface. Temperature, 6 (1), 85-95.

COMSOL Multiphysics User’s Guide (2010). COMSOLAB.

Zinkin A.N., Zingilevskaia N.G., Muselian B.B. (1997). Kriovozdeistvie v otorinolaringologii: metodicheskiie rekomendatsii [Cryotherapy in otorhinolaryngology: guidelines]. Krasnodar [in Russian].

Mazur P. (1968). Physical-chemical factors underlying cell injury in cryosurgical freezing. In: Cryosurgery ed. by R. W. Rand, A. P. Rinfret, H. Leden - Springfield, Illinois, U.S.A., 32-51.

Shafranov V.V., Borkhunova E.N., Kostylev V.A. (2012). Mekhanizm razrusheniia biologicheskikh

tkanei vo vremia lokalnoi kriodestruktsii [Mechanism of destruction of biological tissues during local

cryodestruction]. Vestnik rossiiskoi akademii yestestvennykh nauk - Bulletin of the Russian Academy

of Natural Sciences, 1, 68 – 77 [in Russian].

How to Cite

Anatychuk, L., Kobylianskyi, R., & Fedoriv, R. (2024). Computer simulation of cyclic temperature effect on the oncological neoplasm of the human skin. Journal of Thermoelectricity, (3), 29–45. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/53

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >> 

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.